精英家教网 > 高中数学 > 题目详情
a<1是不等式|x-|+|x|>a ()恒成立的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
C

分析:根据两个绝对值符号函数的性质,我们可以求出函数y=|x-1|+|x|的值域,进而可以求出满足不等式|x-1|+|x|>a (x∈R)恒成立的a的取值范围,与a<1比较后,结合充要条件的判定方法,即可得到答案.
解:∵函数y=|x-1|+|x|的值域为[1,+∞)
∴满足不等式|x-1|+|x|>a (x∈R)恒成立的a的取值范围为:a<1
故<1是不等式|x-1|+|x|>a (x∈R)恒成立的充要条件
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a、b、c∈R,求证:a2+b2+c2+4≥ab+3b+2c.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于
(  )
A.{x|x<-2}    B.{x|x>3}
C.{x|-1<x<2}D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则下列不等式中不能成立的是(    )
A.B.  C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知a+1,a+2,a+3是钝角三角形的三边,则a的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a、b∈R+,且,则有                     (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.设实数满足条件,则的最大值为   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若<<0,则下列不等式:①a+b<ab;②|a|>|b|;③a<b;④+>2中正确的是   (  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不等式对一切R恒成立,则实数a的取值范围是  
A.B.C.D.

查看答案和解析>>

同步练习册答案