精英家教网 > 高中数学 > 题目详情

(本题满分14分)        

已知函数处取得极值为2.

(Ⅰ)求函数的解析式;

(Ⅱ)若函数在区间上为增函数,求实数m的取值范围;

(Ⅲ)若图象上的任意一点,直线l的图象相切于点P,求直线l的斜率的取值范围.

 

【答案】

(Ⅰ) .(Ⅱ)

【解析】本试题主要是考查了导数在研究函数中的运用。利用已知条件得到参数关系式得到解析式,以及根据函数的递增性质,得到参数的范围。以及直线与曲线相切的直线斜率的范围。

(1)根据函数处取得极值为2.,那么求函数的解析式;

(Ⅱ)若函数在区间上为增函数,则可知导函数在给定区间恒大于等于零,分离参数的思想得到,实数m的取值范围;

(Ⅲ)因为图象上的任意一点,直线l的图象相切于点P,利用导数的几何意义得到,直线l的斜率的取值范围.

解:(Ⅰ)已知函数,∴

又函数处取值极值2,   ∴

      ∴ .      …………………… 5分

(Ⅱ)∵,得

所以的单调增区间为[,1].

因函数上单调递增,        则有

解得上为增函数.  ………………… 9分

(Ⅲ)∵,∴

直线l的斜率,

, 则

从而得k的取值范围是.                     ……………………… 14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案