(本小题12分)已知空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点,F是BD的中点, (1)求证:BC∥平面AFE (2)平面ABE⊥平面ACD
![]()
解:设宾馆客房租金每间日租金提高x个10元,将有10x间客房空出,客房租金总收入为y.
由题意可得:y=(100+10x)(300-10x) (0≤x<30且x是整数) ……………..6
=100(-x2+20x+300) =-100(x-10)2+40000
当x=10时,ymax=40000 ……………..10
因此每间租金100+10×10=200元时,客房租金总收入最高,日租金40000元。 …………..12
20、证明:(1)∵E,F分别是CD与BD的中点 ∴FE∥BC
∵
∴
BC∥平面AFE ……………..6
(2)∵AC=AD,BC=BD,且E是CD的中点,F是BD的中点 ∴AE⊥DC BE⊥CD
∵
∴CD⊥平面AEB
∵
∴平面ABE⊥平面ACD
……………….12
【解析】略
科目:高中数学 来源: 题型:
(本小题12分)已知
,
,直线
与函数
、
的k*s#5^u图象都相切,且与函数
的k*s#5^u图象的k*s#5^u切点的k*s#5^u横坐标为
.
(Ⅰ)求直线
的k*s#5^u方程及
的k*s#5^u值;
(Ⅱ)若
(其中
是
的k*s#5^u导函数),求函数
的k*s#5^u最大值;
(Ⅲ)当
时,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题
(本小题12分)已知等比数列
中,
。
(1)求数列
的通项公式;
(2)设等差数列
中,
,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源:2011云南省潞西市高二上学期期末考试数学试卷 题型:解答题
(本小题12分)
已知顶点在原点,焦点在
轴上的抛物线与直线
交于P、Q两点,|PQ|=
,求抛物线的方程
查看答案和解析>>
科目:高中数学 来源:2010年浙江省杭州市七校高二上学期期中考试数学文卷 题型:解答题
(本小题12分)
已知圆C:
;
(1)若直线
过
且与圆C相切,求直线
的方程.
(2)是否存在斜率为1直线
,使直线
被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求
出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2012届山东省兖州市高二下学期期末考试数学(文) 题型:解答题
(本小题12分)已知函数![]()
(1) 求这个函数的导数;
(2) 求这个函数的图像在点
处的切线方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com