精英家教网 > 高中数学 > 题目详情

绝对值的几何意义

实数a的绝对值|a|表示数轴上坐标为________的点A到________的距离.

对于任意两个实数a,b,设它们在数轴上的对应点分别为A,B,那么|a-b|的几何意义是数轴上A,B两点之间的________,即线段AB的________.

答案:a 原点 距离距离
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关于复数的类比推理中,错误的是(  )
①复数的加减运算可以类比多项式的加减运算;
②由向量
a
的性质|
a
|2=
a
2类比复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是b2-4ac>0,可以类比得到方程az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
A、①③B、②④C、②③D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网P是平面ABCD外的点,四边形ABCD是平行四边形,
AB
=(2,-1,-4),
AD
=(4,2,0),
AP
=(-1,2,-1).
(1)求证:PA⊥平面ABCD;
(2)对于向量
a
=(x1,y1z1),
b
=(x2y2z2),
c
=(x3y3z3)
,定义一种运算:(
a
×
b
)•
c
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2z3-x3y2z1
,试计算(
AB
×
AD
)-
AP
的绝对值;说明其与几何体P-ABCD的体积关系,并由此猜想向量这种运算(
AB
×
AD
)-
AP
的绝对值的几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P—ABCD中,底面ABCD是一个平行四边形,=(2,-1,-4),=(4,2,0),=(-1,2,-1).

(1)求证PA⊥底面ABCD;

(2)求四棱锥P—ABCD的体积;

(3)对于向量a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3),定义一种运算:

(a×bc=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1.

    试计算(×的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(×的绝对值的几何意义.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列关于复数的类比推理中,错误的是(  )
①复数的加减运算可以类比多项式的加减运算;
②由向量
a
的性质|
a
|2=
a
2类比复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是b2-4ac>0,可以类比得到方程az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
A.①③B.②④C.②③D.①④

查看答案和解析>>

同步练习册答案