精英家教网 > 高中数学 > 题目详情

如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.

(Ⅰ)求证:AB∥GH;

(Ⅱ)求二面角D-GH-E的余弦值;

答案:
解析:

  (1)略

  (2)-


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图所示,在三棱锥P-ABC中,AB=BC=
6
,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=
3

(1)证明△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°.该三棱锥中有哪些直角三角形,哪些面面垂直(只写结果,不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°.
(1)判断△PBC的形状;
(2)证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,AB=BC=
6
,平面PAC⊥平面ABC,PD⊥AC于点D,点O为AC的中点,AD=1,CD=3,PD=
3

(1)求证:BO⊥平面PAC
(2)证明:△PBC为直角三角形;
(3)求直线AP与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB⊥AC,AB=AC=2,E为AC的中点.
(1)求异面直线BE与PC所成角的余弦值;
(2)求二面角P-BE-C的平面角的余弦值.

查看答案和解析>>

同步练习册答案