形状如图所示的三个游戏盘中(图①是正方形,M,N分别是所在边中点,图②是半径分别为2和4的两个同心圆,O为圆心,图③是正六边形,点P为其中心)各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏.
(1)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?
(2)用随机变量X表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分的事件数之差的绝对值,求随机变量X的分布列.
(1)(2)X的分布列为
X | 1 | 3 |
P |
【解析】(1)“一局游戏后,这三个盘中的小球停在阴影部分”分别记为事件A1,A2,A3.
由题意知,A1,A2,A3互相独立,且P(A1)=,P(A2)=,P(A3)=,所以“一局游戏后,这三个盘中的小球都停在阴影部分”的概率为P(A1A2A3)=P(A1)P(A2)·P(A3)=××=.
(2)一局游戏后,这三个盘中的小球停在阴影部分的事件数可能是0,1,2,3,相应的小球没有停在阴影部分的事件数可能取值为3,2,1,0,所以X可能的取值为1,3.
由分析可得P(X=3)=P(A1A2A3)+P(123)=P(A1)·P(A2)P(A3)+P(1)P(2)P(3)=××+××=;P(X=1)=1-=.
所以X的分布列为
X | 1 | 3 |
P |
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用3练习卷(解析版) 题型:填空题
已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用20练习卷(解析版) 题型:填空题
如图,正方体ABCD ?A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用19练习卷(解析版) 题型:解答题
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用18练习卷(解析版) 题型:解答题
已知多项式f(n)=n5+n4+n3-n.
(1)求f(-1)及f(2)的值;
(2)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用16练习卷(解析版) 题型:解答题
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用15练习卷(解析版) 题型:解答题
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用13练习卷(解析版) 题型:填空题
如图,在平面直角坐标系xOy中,F1,F2分别为椭圆=1(a>b>0)的左、右焦点,B,C分别为椭圆的上、下顶点,直线BF2与椭圆的另一个交点为D,若cos∠F1BF2=,则直线CD的斜率为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试选择填空限时训练4练习卷(解析版) 题型:填空题
已知抛物线y2=ax过点A ,那么点A到此抛物线的焦点的距离为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com