设椭圆
的左焦点为
,上顶点为
,过点
与
垂直的直线分别交椭圆和
轴正半轴于
,
两点,且
分向量
所成的比为8∶5.
(1)求椭圆的离心率;
(2)若过
三点的圆恰好与直线
:
相切,求椭圆方程.
![]()
科目:高中数学 来源: 题型:
(09 年聊城一模理)(12分)
已知椭圆
:
的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切。
(Ⅰ)求椭圆
的方程;
(II)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直于
,垂足为点
,线段
的垂直平分线交
于点
,求点
的轨迹
的方程;
(III)设
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(I)求椭圆
的方程;
(II)设椭圆
的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(III)设
与
轴交于点
,不同的两点
在
上,且满足
求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三5月模拟考试理科数学试卷(解析版) 题型:解答题
已知椭圆
的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂
直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)当P不在
轴上时,在曲线
上是否存在两个不同点C、D关于
对称,若存在,
求出
的斜率范围,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2010年广东省高考冲刺强化训练试卷十文科数学 题型:解答题
(本小题满分14分)设椭圆![]()
的左焦点为
,上顶点为
,过点
与
垂直的直线分别交椭圆
与
轴正半轴于点
,且
. ⑴求椭圆
的离心率;⑵若过
、
、
三点的圆恰好与直线![]()
相切,求椭圆
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com