精英家教网 > 高中数学 > 题目详情
等差数列{an}的前n项和为Sn,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{an}的通项公式.
(2)若{an}又是等比数列,令bn= ,求数列{bn}的前n项和Tn.
(1)an=3或an="2n-1;" (2)Tn= 

试题分析:(1)首先根据等差数列的性质,把已知条件转化为关于a2的方程,解出a2的值,然后再根据等比数列的性质,结合已知条件列出关于a2、d的方程,求出公差d即可求出通项公式;(2)求出Sn的表达式,利用裂项法求和.
试题解析:(1)设数列{an}的公差为d,由S3=,可得3a2=,解得a2=0或a2=3.
由S1,S2,S4成等比数列,可得 ,由,故 .
若a2=0,则,解得d=0.此时Sn=0.不合题意;
若a2=3,则,解得d=0或d=2,此时an=3或an=2n-1.
(2)若{an}又是等比数列,则Sn=3n,所以bn=== ,
故Tn=(1- )+( )+()+…+()=1-=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列  的前项和是 
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前项的和   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列 的所有项均为正数,首项成等差数列.
(1)求数列的通项公式;
(2)数列的前项和为求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列中,,前
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列的前项和为,对任意满足,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列排出如图所示的三角形数阵,设2013位于数阵中第s行,第t列,则s+t=(  )
A.61B.62C.63D.64

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等差数列的前三项分别为,则这个数列的通项公式          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示的数阵叫“莱布尼兹调和三角形”,他们是由整数的倒数组成的,第行有个数且两端的数均为,每个数是它下一行左右相邻两数的和,如:…,则第行第3个数字是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列中,已知,且在前项和中,仅当时,最大,则公差d满足( )
A.B.
C.D.

查看答案和解析>>

同步练习册答案