【题目】已知函数
,其中
,
为函数
的导函数.
(1)讨论
的单调性;
(2)若对任意
,
恒成立,求实数
的取值范围.
【答案】(1)见解析(2)![]()
【解析】
(1)求
,令
,求出
,得出
,对
分类讨论求出
,
的解,即可得出结论;
(2)
分离参数转化为求
,设
,通过求导及构造函数,得
且满足
,进而得到
时,
取得最小值,即可求出结论.
(1)![]()
令
,则
,所以
故![]()
(ⅰ)当
时,![]()
当
时,
,所以
在
上单调递减
当
时,
,所以
在
上单调递增
(ⅱ)当
时,令
,则
或![]()
(a)若
即
时,
当
或
时,
,
所以
在
和
上单调递增
当
时,
,
所以
在
上单调递减
(b)若
即
时,
,
所以
在
上单调递增
(c)若
即
时,
当
或
时,
,
所以
在
和
上单调递增
当
时,
,
所以
在
上单调递减
综上所述:当
时,
在
上单调递减,在
上单调递增
当
时,
在
和
上单调递增,
在
上单调递减
当
时,
在
上单调递增
当
时,
在
和
上单调递增,
在
上单调递减
(2)解法一:参数分离法
由
知
在
恒成立即![]()
令
,则![]()
令
,则
,
所以
在
上单调递增
又
,![]()
所以
在
上存在唯一零点
,且![]()
所以当
时,
即
;当
时,
即![]()
所以
在
上单调递减,在
上单调递增,
又因为![]()
思路一:即![]()
因为
,所以
(*)
设
,当
时,
,
所以
在
上单调递增
由(*)知
,所以![]()
所以
,
则有
即![]()
所以实数
的取值范围为![]()
思路二:即
,两边取对数,
得![]()
即
(*)
设
,则
在
上单调递增
由(*)知
,所以![]()
所以
,
则有
即![]()
所以实数
的取值范围为
.
下面提供一种利用最小值的定义求
的最小值的方法:
先证:
,
设
,则
,
所以当
时,
;当
时,
,
所以
在
上单调递减,在
上单调递增,
所以
即
,
(当且仅当
时等号成立),
再证:![]()
由
得(用
代换
),
,
,
(当且仅当
时等号成立)
最后证:方程
有实根,
设
,则
在
上单调递增,
又
,
,
所以
在
有唯一零点,
即方程
有实根,
综上
,则有
即
,
所以实数
的取值范围为
.
解法二:函数性质法
由
知
在
恒成立,
设
,则
,
因为
,
,所以
在
上单调递增,
又当
时,
;当
时,
;
所以
在
上存在唯一零点
,即
,(1)
所以当
时,
;当
时,
,
所以
在
上单调递减,在
上单调递增,
,
,
即
,
思路一:即
,
因为
,所以
,(*)
设
,当
时,
,
所以
在
上单调递增,
由(*)知
,
所以
即
,
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,对任意的x∈[t,t+2]不等式f(x+t)≥2f(x)恒成立,那么实数t的取值范围是( )
A. [
,+∞) B. [2,+∞) C. (0,
] D. [0,
]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不经过原点的直线
在两坐标轴上的截距相等,且点
在直线
上.
(1)求直线
的方程;
(2)过点
作直线
,若直线
,
与
轴围成的三角形的面积为2,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A(1,0)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求α,β的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com