精英家教网 > 高中数学 > 题目详情
(2012•绵阳三模)某运输公司有7辆载重量为8吨的A型卡车与4辆载重量为10吨的b型卡车,有9名驾驶员.在建筑某段高速公路中,此公司承包了每天至少搬运360吨沥青的任务•已知每辆卡车每天往返的次数为A型卡车5次,B型卡车6次.每辆卡车每天往返的成本费为A型车160元,5型车180元.该公司每天所花的成本费最低时的派车计划为(  )
分析:设公司派出A型车x辆,B型车y辆,花费的成本为z元,得目标函数是z=160x+180y.在满足线性约束条件的情况下,讨论A、B两种车的派出方案,经计算可得当派出A型车3辆与B型车4辆,可使每天所花费的成本最低为1200元.
解答:解:设公司派出A型车x辆,B型车y辆,花费的成本为z元,得
z=160x+180y,
x、y满足约束条件
x≤7且y≤4
x+y≤9
40x+60y≥360
,(x、y∈Z)
可得每派出一辆A型车,每天完成的任务是40吨,消费160元;
而每派出一辆B型车,每天完成的任务是60吨,消费180元.
由此可得应该尽量多派B型车,能使平均每吨的消费变少
因此,将4辆B型车都派出,每天可完成240吨的任务,剩余120吨的任务由A型车完成
因为120=40×3,所以再派3辆车,恰好可以完成每天360吨的任务.
∴zmax=F(3,4)=160×3+180×4=1200,
即派出A型车3辆与B型车4辆,可使每天所花费的成本最低为1200元
故选C
点评:本题给出线性约束条件,求目标函数在约束条件下的最小值,着重考查了用简单的线性规划解决应用问题的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绵阳三模)抛物线y=-x2的焦点坐标为
(0,-
1
4
(0,-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<
π
2
,x∈R)在一个周期内的图象如图所示.则y=f(x)的图象可由函数y=cosx的图象(纵坐标不变)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知正项等差数列{an}的前n项和为Sn,且S15=45,M为a5,a11的等比中项,则M的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=
ax
+blnx+c(a>0)的图象在点(1,f(1))处的切线方程为x-y-2=0.
(I)用a表示b,c;
(II)若函数g(x)=x-f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为
1
2
,丙、丁两人各自闯关成功的概率均为
2
3

(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II) 记游戏A、B被闯关成功的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

同步练习册答案