精英家教网 > 高中数学 > 题目详情
已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为( )
A.7
B.8
C.9
D.10
【答案】分析:求出右焦点H 的坐标,由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|,从而求得2a+|AH|的值.
解答:解:∵F是双曲线-=1的左焦点,∴a=2,b=2,c=4,F(-4,0 ),右焦点为H(4,0),
由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|=4+ 
=4+5=9,
故选 C.
点评:本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,把|PF|+|PA|化为2a+|PH|+|PA|是
解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练19练习卷(解析版) 题型:填空题

已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,|PF|+|PA|的最小值为    .

 

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省乐山一中高二(上)期中数学试卷(解析版) 题型:选择题

已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为( )
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省实验中学高二(上)期末质量检测数学试卷(理科)(解析版) 题型:选择题

已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为( )
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源:2012年广东省湛江市高考数学二模试卷(理科)(解析版) 题型:选择题

已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为( )
A.7
B.8
C.9
D.10

查看答案和解析>>

同步练习册答案