精英家教网 > 高中数学 > 题目详情
15.已知三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,且PA=2,PB=$\sqrt{3}$,PC=3,则这个三棱锥的外接球的表面积为(  )
A.16πB.32πC.36πD.64π

分析 三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.

解答 解:三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它
扩展为长方体的外接球,求出长方体的对角线的长:$\sqrt{4+3+9}$=4
所以球的直径是4,半径为2,球的表面积:4π×4=16π.
故选A.

点评 本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设点M(x0,1),设在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则实数x0的取值范围为$[-\sqrt{3},\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,且${cos^2}\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.直角三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3-12x,若f(x)在区间(2m,m+1)上单调递减,则实数m的取值范围是(  )
A.[-1,1]B.(-1,1]C.(-1,1)D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,则H为△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若一个圆台的轴截面如图所示,则其侧面积等于(  ) 
A.6B.C.$3\sqrt{5}π$D.$6\sqrt{5}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\vec a=(-1,-3,2)$,$\vec b=(1,2,0)$,则$\vec a•\vec b$=(  )
A.-5B.-7C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l1:2x+y+4=0,l2:ax+4y+1=0.
(1)当l1⊥l2时,求l1与l2的交点坐标;
(2)当l1∥l2时,求l1与l2间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正方体ABCD-A1B1C1D1中,E是棱C1D1的中点,则异面直线A1B、EC的夹角的余弦值为(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

同步练习册答案