精英家教网 > 高中数学 > 题目详情
若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足a1=m(m>0),an+1=
an-1,an>1
1
an
,0<an≤1
则下列结论中错误的是(  )
A.若a3=4,则m可以取3个不同的值
B.若m=
2
,则数列{an}是周期为3的数列
C.?T∈N*且T≥2,存在m>1,使得{an}是周期为T的数列
D.?m∈Q且m≥2,使得数列{an}是周期数列
对于选项A,因为an+1=
an-1,an>1
1
an
,0<an≤1

所以
a2>1
a3=a2-1
0<a2≤1
a3=
1
a2

因为a3=4,所以a2=5或a2=
1
4

又因为
a1>1
a2=a1-1
0<a1≤1
a2=
1
a1
,a1=m,所以m=6或m=
5
4
或m=
1
5
,所以选项A正确;
对于选项B,m=
2
>1,所以a2=
2
-1<1
;所以a3=
1
a2
=
2
+1>1
,所以a4=a3-1=
2

所以数列{an}是周期为3的数列,所以选项B正确;
对于选项C,当B可知当m=
2
>1时,数列{an}是周期为3的周期数列,所以C正确.
故错误的是D.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,an+1=2an+n,则通项an=
3×2n-1-n-1
3×2n-1-n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设m>3,对于数列{an} (n=1,2,…,m,…),令bk为a1,a2,…,ak中的最大值,称数列 {bn} 为{an} 的“递进上限数列”.例如数列2,1,3,7,5的递进上限数列为2,2,3,7,7.则下面命题中
①若数列{an} 满足an+3=an,则数列{an} 的递进上限数列必是常数列;
②等差数列{an} 的递进上限数列一定仍是等差数列
③等比数列{an} 的递进上限数列一定仍是等比数列
正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)若数列{an}满足an+12-
a
2
n
=d
(d为正常数,n∈N+),则称{an}为“等方差数列”.甲:数列{an}为等方差数列;乙:数列{an}为等差数列,则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)已知函数f(x)=ax-
ln(1+x)
1+x
在x=0处取得极值.
(I)求实数a的值,并判断,f(x)在[0,+∞)上的单调性;
(Ⅱ)若数列{an}满足a1=1,an+1=f(an),求证:0<an+1<an≤l;
(Ⅲ)在(II)的条件.下,记sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求证:sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x+1
,若数列{an}满足:an>0,a1=1,an+1=[f(
an
)]2
(I)求数列{an}的通项公式数列an
(II)若数列{an}的前n项和为Sn,证明:Sn<2.

查看答案和解析>>

同步练习册答案