【题目】教育部日前出台《关于普通高中学业水平考试的实施意见》,根据意见,学业水平考试成绩以“等级”或“合格、不合格”呈现.计入高校招生录取总成绩的学业水平考试的3个科目成绩以等级呈现,其他科目一般以“合格、不合格”呈现.若某省规定学业水平考试中历史科各等级人数所占比例依次为:A等级
,B等级
,C等级
,D、E等级共
.现采用分层抽样的方法,从某省参加历史学业水平考试的学生中抽取100人作为样本,则该样本中获得A或B等级的学生中一共有( )
A.30人B.45人C.60人D.75人
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,城市缺水问题尤为突出,某市为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照
,
……
分成9组,制成了如图所示的频率分布直方图.
![]()
(1)求频率分布直方图中
的值,并估计该市市民月用水量的中位数;
(2)若该市政府希望使85%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,椭圆
的极坐标方程为
,其左焦点
在直线
上.
(1)若直线
与椭圆
交于
两点,求
的值;
(2)求椭圆
的内接矩形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,
,
,
,
,E是AD的中点,O是AC与BE的交点.将
沿BE折起到图2中
的位置,得到四棱锥
.
![]()
(1)证明:
平面
;
(2)若平面
平面
,求平面
与平面
夹角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有若干扑克牌:6张牌面分别是2,3,4,5,6,7的扑克牌各一张,先后从中取出两张.若每次取后放回,连续取两次,点数之和是偶数的概率为
;若每次取后不放回,连续取两次,点数之和是偶数的概率为
,则( )
A.
B.
C.
D.以上三种情况都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①
中,
是
成立的充要条件;
②当
时,有
;
③已知
是等差数列
的前n项和,若
,则
;
④若函数
为
上的奇函数,则函数
的图象一定关于点
成中心对称.其中所有正确命题的序号为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
为自然对数的底数,
.
(1)讨论函数
的单调性,并写出相应的单调区间;
(2)已知
,
,若
对任意
都成立,求
的最大值;
(3)设
,若存在
,使得
成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com