分析 (1)求导数,确定切线的斜率,切点的坐标,即可求出切线方程;
(2)求导数,利用导数的正负,讨论函数f(x)的单调性;
(3)G(x)=f(x)-g(x)=(a-1)(x-1)-lnx,若h(x)=f(x),x>0,G(x)≥0成立x>0,G(x)≥0成立,即可求实数a的值.
解答 解:(1)当a=1时,f(x)=x-1-lnx,f(1)=0,f′(x)=1-$\frac{1}{x}$,∴f′(1)=0,
∴函数f(x)=a(x-1)-lnx在点(1,f(1))处的切线方程为y=0;
(2)f′(x)=a-$\frac{1}{x}$(x>0),
a≤0,f′(x)<0,函数在(0,+∞)上单调递减;
a>0,由f′(x)>0,解得x>$\frac{1}{a}$,函数的单调递增区间是($\frac{1}{a}$,+∞),
f′(x)<0,0<x<$\frac{1}{a}$,函数的单调递减区间是(0,$\frac{1}{a}$);
(3)令G(x)=f(x)-g(x)=(a-1)(x-1)-lnx,定义域(0,+∞),G(1)=0.
∵h(x)=f(x),∴x>0,G(x)≥0成立;
a≤1,G′(x)=a-1-$\frac{1}{x}$<0,G(x)在(0,+∞)单调递减,
∴G(2)<G(1)=0,此时题设不成立;
a>1时,G(x)在(0,$\frac{1}{a-1}$)上单调递减,($\frac{1}{a-1},+∞$)上单调递增,
∴G(x)min=2-a+ln(a-1),
∴2-a+ln(a-1)≥0恒成立,
令t=a-1,t>0,则1-t+lnt≥0恒成立,
令H(t)=1-t+lnt(t>0),则H(1)=0,H′(t)=$\frac{1-t}{t}$,
∴H(t)在(0,1)上单调递增,(1,+∞)上单调递减,
∴H(t)max=H(1)=0,
∴H(t)≤0(t=1时取等号),
t>0时,1-t+lnt=0的解为t=1,即a=2.
点评 本题考查导数知识的运用,考查求切线方程和函数的单调性,考查分类讨论的数学思想,考查函数的最值,正确求导,合理分类是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
| C. | 向右平移$\frac{π}{3}$个单位长度 | D. | 向左平移$\frac{π}{6}$个单位长度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com