精英家教网 > 高中数学 > 题目详情
15.如图,A,B,C是直线l上的三点,AB=4,BC=4,过A作动圆与直线l相切,过B,C分别做圆的异于l的两切线,交于点P,则P的轨迹为椭圆.(填轨迹类型,不求方程)

分析 利用切割线定理,结合椭圆的定义,即可得出结论.

解答 解:由题意,设切点分别为D,E,则DB=4,EC=8,PE=DE
PB=4+PD,PC=8-PE,
∴PB+PC=12>BC,
∴P的轨迹为以B,C为焦点的椭圆,
故答案为椭圆.

点评 本题考查椭圆的定义,考查切割线定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦点为F,右顶点为A,点P在椭圆上,若FP⊥PA,则直线PF的斜率可以是(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a是实数,f(x)=a-$\frac{2}{{2}^{x}+1}$(x∈R).
(1)证明:f(x)是增函数;
(2)是否存在实数a,使函数f(x)为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知1<m<4,F1,F2为曲线$C:\frac{x^2}{4}+\frac{y^2}{4-m}=1$的左、右焦点,点P为曲线C与曲线$E:{x^2}-\frac{y^2}{m-1}=1$在第一象限的交点,直线l为曲线C在点P处的切线,若三角形F1PF2的内心为点M,直线F1M与直线l交于N点,则点M,N横坐标之和为(  )
A.1B.2C.3D.随m的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,a2=3,a14=25,则a7+a9=(  )
A.22B.75C.28D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线C的渐近线方程为y=±$\frac{1}{2}$x,点(3,$\sqrt{2}$)在双曲线上.
(1)求双曲线C的方程;
(2)过点P(0,1)的直线l交双曲线C于A,B两点,交x轴于点Q(点Q与双曲线的顶点不重合),当$\overrightarrow{PQ}$=λ$\overrightarrow{QA}$=μ$\overrightarrow{QB}$,且λ•μ=-5时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|y=$\sqrt{x-2}$},B={x|x2-4<0},则A∪B=(  )
A.B.(2,+∞)C.(-2,+∞)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD的直观图与三视图如图所示,其中正(主)视图与侧(左)视图为直角三角形,俯视图为正方形(数据如图所示),已知该几何体的体积为$\frac{2}{3}$.
(1)求实数a的值;
(2)将△PAB绕PB旋转一周,求所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a(x-1)-lnx(a为实数),g(x)=x-1,h(x)=$\left\{\begin{array}{l}g(x),f(x)<g(x)\\ f(x),f(x)≥g(x)\end{array}$.
(1)当a=1时,求函数f(x)=a(x-1)-lnx在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)若h(x)=f(x),求实数a的值.

查看答案和解析>>

同步练习册答案