精英家教网 > 高中数学 > 题目详情
3.已知1<m<4,F1,F2为曲线$C:\frac{x^2}{4}+\frac{y^2}{4-m}=1$的左、右焦点,点P为曲线C与曲线$E:{x^2}-\frac{y^2}{m-1}=1$在第一象限的交点,直线l为曲线C在点P处的切线,若三角形F1PF2的内心为点M,直线F1M与直线l交于N点,则点M,N横坐标之和为(  )
A.1B.2C.3D.随m的变化而变化

分析 先求出P的坐标,得出切线方程,求出三角形F1PF2的内切圆的半径、直线F1M的方程,联立求出N的横坐标,即可得出结论.

解答 解:联立两曲线方程,消去y可得x=$\frac{2}{\sqrt{m}}$,
设P(x0,y0),直线l的方程为$\frac{{x}_{0}x}{4}+\frac{{y}_{0}y}{4-m}$=1①,
设三角形F1PF2的内切圆的半径为r,则由等面积可得$2\sqrt{m}{y}_{0}$=(4+$2\sqrt{m}$)r,
∴r=$\frac{\sqrt{m}{y}_{0}}{2+\sqrt{m}}$=yM②,
直线F1M的方程为y=$\frac{{y}_{M}}{1+\sqrt{m}}$(x+$\sqrt{m}$)③,
联立①②③,化简可得$3\sqrt{m}$x=6$\sqrt{m}$,
∴xN=2,
∵xM=1,
∴xM+xN=3
故选:C.

点评 本题考查题意、双曲线方程的性质,考查直线与椭圆的位置关系,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设x,y满足约束条件$\left\{\begin{array}{l}{x-2y+1≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,目标函数z=x+2y的最大值为(  )
A.10B.7C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l1:x+2y-3=0与直线l2:2x-ay+3=0平行,则a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆C:x2+y2+6y-a=0的圆心到直线x-y-1=0的距离等于圆C半径的$\frac{1}{2}$,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线C1:y=ax2(a>0)的焦点F也是椭圆C2:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{{b}^{2}}$=1(b>0)的一个焦点,点M,P($\frac{3}{2}$,1)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,直三棱柱ABC-A1B1C1中,M,N分别为A1B,B1C1的中点
(Ⅰ)求证:MN∥平面A1ACC1
(Ⅱ)已知A1A=AB=2,BC=$\sqrt{5}$,∠CAB=90°,求三棱锥C1-ABA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,A,B,C是直线l上的三点,AB=4,BC=4,过A作动圆与直线l相切,过B,C分别做圆的异于l的两切线,交于点P,则P的轨迹为椭圆.(填轨迹类型,不求方程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.$\frac{2\sqrt{2}}{3}$+1B.2$\sqrt{3}$C.2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.表面积为20π的球面上有四点S、A、B、C,且△ABC是边长为2$\sqrt{3}$的等边三角形,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值是3$\sqrt{3}$.

查看答案和解析>>

同步练习册答案