精英家教网 > 高中数学 > 题目详情
5.设椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦点为F,右顶点为A,点P在椭圆上,若FP⊥PA,则直线PF的斜率可以是(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

分析 先求出A、F的坐标,设出P的坐标,求出的坐标,由题意可得方程组,解方程组求得点P的坐标.然后求解斜率.

解答 解:由已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦点为F(-2,0),右顶点为A(3,0),设点P(x,y),则$\overrightarrow{PA}$=(3-x,-y),$\overrightarrow{FP}$=(x+2,y).
由已知FP⊥PA,可得$\left\{\begin{array}{l}{(3-x)(x+2)+y(-y)=0}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,4x2-9x-9=0,解得x=3,或x=-$\frac{3}{4}$.
由题意x=-$\frac{3}{4}$,于是y=±$\frac{5\sqrt{3}}{4}$.∴点P的坐标是(-$\frac{3}{4}$,±$\frac{5\sqrt{3}}{4}$).
直线PF的斜率:$\frac{±\frac{5\sqrt{3}}{4}}{-\frac{3}{4}+2}$=$±\sqrt{3}$.
故选:D.

点评 本题考查椭圆的简单性质和点到直线的距离公式,两个向量垂直的性质,求出点P的坐标,是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某人开车去上班,开始匀速前行,后来为了赶时间加速前行,则下列图象与描述的事件最吻合的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,点P是正方体ABCD-A1B1C1D1的面对角线BC1(线段BC1)上运动,给出下列五个命题:
①三棱锥A-D1PC的体积不变;
②直线AP与平面ACD1所成角的大小不变;
③二面角P-AD1-C的大小不变;
④直线AD与直线B1P为异面直线;
⑤点M是平面A1B1C1D1上到点D和C1距离相等的点,则点M一定在直线A1D1上.
其中真命题的编号为①③④⑤.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x,y满足约束条件$\left\{\begin{array}{l}{x-2y+1≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,目标函数z=x+2y的最大值为(  )
A.10B.7C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}是公比为q(q≠1)的等比数列,且a1,a3,a2成等差数列,则公比q的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合M={x|x=$\frac{k}{2}$+$\frac{1}{4}$,k∈Z},N={x|x=$\frac{k}{4}$+$\frac{1}{2}$,k∈Z},若x0∈M,则x0与N的关系是x0∈N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点P是圆心为F1的圆(x+1)2+y2=12上任意一点,点F2(1,0),若线段PF2的垂直平分线与半径PF1相交于点M.
(1)求动点M的轨迹方程;
(2)过点F2的直线l(l不与x轴重合)与M的轨迹交于不同的两点A,B,求△F1AB的内切圆半径r的最大值,并求出此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l1:x+2y-3=0与直线l2:2x-ay+3=0平行,则a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,A,B,C是直线l上的三点,AB=4,BC=4,过A作动圆与直线l相切,过B,C分别做圆的异于l的两切线,交于点P,则P的轨迹为椭圆.(填轨迹类型,不求方程)

查看答案和解析>>

同步练习册答案