精英家教网 > 高中数学 > 题目详情
设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则函数f(x)的递增区间为   
【答案】分析:先利用函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,求得参数a=1或-1,利用不是偶函数,确定a=1,从而将函数用分段函数表示,进而可求函数f(x)的递增区间.
解答:解:由题意得f(-x)=-f(x),即:|-x+a|-|-x-1|=-|x+a|+|x-1|
∴a=1或-1.
a=-1,f(x)=0是偶函数不对,
a=1时,分情况讨论可得,,所以函数f(x)的递增区间为〔-1,1〕
故答案为〔-1,1〕
点评:本题的考点是奇偶性与单调性的综合,主要考查利用奇偶函数的定义求参数,考查函数的单调性,关键是参数的确定,从而确定函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•上海模拟)设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则函数f(x)的递增区间为
〔-1,1〕
〔-1,1〕

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则a=
 

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(04)(解析版) 题型:解答题

设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则函数f(x)的递增区间为   

查看答案和解析>>

科目:高中数学 来源:2011年湖北省武汉市华师一附中高三5月模拟数学试卷(文科)(解析版) 题型:解答题

设a是实数.若函数f(x)=|x+a|-|x-1|是定义在R上的奇函数,但不是偶函数,则函数f(x)的递增区间为   

查看答案和解析>>

同步练习册答案