【题目】已知函数的图象与x轴恰有两个不同公共点,则m =_______.
【答案】0或
【解析】
令x3x2﹣m=0,化为m=x3x2=g(x),g′(x)=3x2﹣3x=3x(x﹣1),令g′(x)=0,解得x=0或1.利用导数可得其单调性极值,根据函数f(x)=x3x2﹣m的图象与x轴恰有两个不同公共点,可得m.
令x3x2﹣m=0,化为m=x3x2=g(x),
g′(x)=3x2﹣3x=3x(x﹣1),
令g′(x)=0,解得x=0或1.
∴函数g(x)在(﹣∞,0)上单调递增,
在(0,1)上单调递减,在(1,+∞)单调递增.
g(0)=0,g(1).
∴函数g(x)的大致图像如图:
∵函数f(x)=x3x2﹣m的图象与x轴恰有两个不同公共点,则m或0.
故答案为:0或.
科目:高中数学 来源: 题型:
【题目】如图,从一个面积为的半圆形铁皮上截取两个高度均为的矩形,并将截得的两块矩形铁皮分别以,为母线卷成两个高均为的圆柱(无底面,连接部分材料损失忽略不计).记这两个圆柱的体积之和为.
(1)将表示成的函数关系式,并写出的取值范围;
(2)求两个圆柱体积之和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,底面ABCD为矩形,DP⊥平面PBC,E,F分别为PA与BC的中点.
(1)求证:BC⊥平面PDC;
(2)求证:EF//平面PDC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知函数f(x)=
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com