精英家教网 > 高中数学 > 题目详情
5.若点P是曲线y2=4x上的一个动点,则点P到点A(0,1)的距离与点P到y轴的距离之和的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{2}-1$C.$\sqrt{2}+1$D.2

分析 先求出抛物线的准线方程,焦点坐标,由于A在抛物线的外部,所以连接焦点F和点A,AF与抛物线的交点P,即为所求点,利用抛物线的定义可求点P到y轴距离和到点A(0,1)距离之和的最小值.

解答 解:y2=4x的准线是x=-1.抛物线的焦点坐标为(1,0),
由于A在抛物线的外部,所以连接焦点F和点A,AF与抛物线的交点P,即为所求点,
∵P到x=-1的距离等于P到焦点F的距离,
∴点P到y轴距离和到点A(0,1)距离之和为P到焦点F的距离和到点A(0,1)距离之和减1,
∴当且仅当A,P,F三点共线时,点P到y轴距离和到点A(0,1)距离之和最小,
∴点P到y轴距离和到点A(0,1)距离之和的最小值为|AF|-1=$\sqrt{2}$-1.
故选:B.

点评 本题以抛物线的标准方程为载体,考查抛物线的定义,考查距离和,解题的关键是利用抛物线上的点到焦点的距离等于它到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知点F(2,0)是椭圆3kx2+y2=1的一个焦点,则实数k的值是$\frac{1}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)是奇函数,且f(2)=3,则f(-2)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f($-\sqrt{2}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设双曲线的中心在原点,焦点在x轴上,离心率e为$\sqrt{5}$,则该双曲线的两条渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{2}x$C.y=±4xD.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-x(x≥0)}\\{{x}^{2}-x(x<0)}\end{array}\right.$,对于任意x∈[1,+∞),不等式f(a2-ex-1)>f(2x2-2a)恒成立,则实数a的取值范围为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.把5张分别写有数字1,2,3,4,5的卡片混合,再将其任意排成一行,则得到的数能被2或5整除的概率是(  )
A.0.2B.0.4C.0.6D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中,真命题的是(  )
A.?x>0,2x>x2B.?x0∈R,e${\;}^{{x}_{0}}$≤0
C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知各项都为正数的等比数列{an}的公比不为1,则an+an+3与an+1+an+2的大小关系是(  )
A.an+an+3>an+1+an+2B.an+an+3=an+1+an+2
C.an+an+3<an+1+an+2D.与公比q有关

查看答案和解析>>

同步练习册答案