精英家教网 > 高中数学 > 题目详情
数4557、1953的最大公约数应该是(  )
A、651B、217
C、93D、31
考点:用辗转相除计算最大公约数
专题:计算题
分析:利用“辗转相除法”即可得出.
解答: 解:4557=1953×2+651,1953=651×3.
∴数4557、1953的最大公约数是651.
故选:A.
点评:本题考查了“辗转相除法”,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-
1
4x
+
1
2x
,则此函数的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若钝角三角形三内角的度数依次成等差数列,且最小边长与最大边长的比值为m,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则关于x的方程x2+2ax+b2=0有两个虚根的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A、y=-ln|x|
B、y=x3
C、y=2|x|
D、y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC中,
BA
BC
<0
,则三角形ABC的形状为(  )
A、钝角三角形
B、直角三角形
C、锐角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在上、下底面对应边之比为1:2的正三棱台中,过上底面一边A1B1作一个平行于棱的平面A1B1 EF,求这个平面分三棱台所成的两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x)=-
1
f(x+3)
且f(4)=-2,则f(2018)的值为(  )
A、4
B、-2
C、2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案