精英家教网 > 高中数学 > 题目详情
已知A、B、C、D是球面上四点,若AB=AC=
2
,BD=DC=CB=2,二面角A-BC-D的平面角等于150°,则该球的表面积为(  )
分析:由题设知四面体ABCD中,AB=AC=
2
,BD=DC=CB=2,设等边△BDC的外接圆的圆心为E,BC中点为H,球心为O,设球半径为r,则由题设条件能够推导出r2=BE2+EO2=
4
3
+y2
,且r2=
25
12
+(
1
2
-y)2
,由此解得y=1,从而求出r,由此能够求出球的表面积.
解答:解:由题设知四面体ABCD中,AB=AC=
2
,BD=DC=CB=2,
如图,设等边△BDC的外接圆的圆心为E,BC中点为H,球心为O,设球半径为r,
则Rt△OEB中,∠OEB=90°,
∵BD=DC=CB=2,AB=AC=
2

∴∠AHE是二面角A-BC-D的平面角,故∠AHE=150°,
DE=
2
3
DH
=
2
3
×
4-1
=
2
3
3
,HE=
1
3
DH=
3
3

r2=BE2+EO2=
4
3
+y2
,…①
作AI⊥DH,交DH延长线与I,则AH=1,HE=
3
3
,OA=r,∠AHT=180°-∠AHE=30°,
∴AI=
1
2
,IE=IH+HE=
3
2
+
3
3
=
5
3
6

r2=
25
12
+(
1
2
-y)2
,…②
由①②得y2+
4
3
=y2-y+
7
3
,解得y=1,
∴r=
4
3
+y2
=
21
3

∴球的表面积S=4π(
21
3
)
2
=
28π
3

故选B.
点评:本题考查球的表面积的求法,具体涉及到锥锥的结构特征、二面角的平面角、余弦定理、三角形性质、球的简单性质等知识点,解题时要认真审题,注意合理地化空间几何问题为平面几何问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D是抛物线y2=4x上四点,F是焦点,且
FA
+
FB
+
FC
=
0
,则|
FA
|+|
FB
|+|
FC
|
=(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知a、b、c、d是公比为2的等比数列,则
2a+b
2c+d
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的表面积为(  )

查看答案和解析>>

同步练习册答案