精英家教网 > 高中数学 > 题目详情
如图,平面ABC⊥平面ABD,∠ACB=90°,CA=CB,△ABD是正三角形,则二面角C-BD-A的平面角的正切值为多少.
分析:取AB的中点O,连接CO,作OH⊥BD,连接CH,证明∠CHO是二面角C-BD-A的平面角,求出CO,OH,即可求得二面角C-BD-A的平面角的正切值.
解答:解:取AB的中点O,连接CO,作OH⊥BD,连接CH
∵CA=CB,∴CO⊥AB
∵平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,
∴CO⊥平面ABD,
∵OH⊥BD
∴CH⊥BD
∴∠CHO是二面角C-BD-A的平面角
设CA=2a,则
∵∠ACB=90°,CA=CB,
∴CO=
2
a
∵△ABD是正三角形
∴OH=
6
2
a

∴tan∠CHO=
CO
OH
=
2
a
6
2
a
=
2
3
3
点评:本题考查面面角,考查面面垂直,正确作出面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为a的菱形,且∠ABC=60°,侧棱长为
2
2
a
,若经过AB1且与BC1平行的平面交上底面线段A1C1于点E.
(1)试求AE的长;
(2)求证:A1C⊥平面AB1E.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)如图,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延长线上一点,过A、B、P三点的平面交FD于M,交EF于N.
(I)求证:MN∥平面CDE:
(II)当平面PAB⊥平面CDE时,求三梭台MNF-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正三棱锥ABC-A1B1C1中,底面边长为a,侧棱长为
2
2
a
,若经过对角线AB1且与对角线BC1平行的平面交上底面于DB1
(1)试确定D点的位置,并证明你的结论;
(2)求平面AB1D与侧面AB1所成的角及平面AB1D与底面所成的角;
(3)求A1到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1米的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轨迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:米.
(Ⅰ)求助跑道所在的抛物线方程;
(Ⅱ)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1米的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轨迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:米.
(Ⅰ)求助跑道所在的抛物线方程;
(Ⅱ)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值.)

查看答案和解析>>

同步练习册答案