½â£º£¨I£©ÉèÖúÅܵÀËùÔÚµÄÅ×ÎïÏß·½³ÌΪf£¨x£©=a
0x
2+b
0x+c
0£¬
ÓÉÌâÒâÖª

½âµÃa
0=1£¬b
0=-4£¬c
0=4£¬
¡àÖúÅܵÀËùÔÚµÄÅ×ÎïÏß·½³ÌΪy=x
2-4x+4£®
£¨II£©Éè·ÉÐй켣ËùÔÚÅ×ÎïÏß·½³ÌΪg£¨x£©=ax
2+bx+c£¬£¨a£¼0£©
ÓÉÌâÒâÖª

£¬µÃ

£¬½âµÃ

¡àg£¨x£©=ax
2+£¨2-6a£©x+9a-5=a£¨x-

£©
2+1-

£¬
Áîg£¨x£©=1£¬µÃ£¨x-

£©
2=

£¬
¡ßa£¼0£¬¡àx=

£¬
µ±x=

ʱ£¬g£¨x£©ÓÐ×î´óÖµ1-

£¬
ÔòÔ˶¯Ô±·ÉÐоàÀëd=3-

-3=-

£¬·ÉÐйý³ÌÖоàÀëÆ½Ì¨×î´ó¸ß¶Èh=1-

-1=-

£¬
ÒÀÌâÒâ4¡Ü-

¡Ü6£¬µÃ2¡Ü-

¡Ü3£®
·ÉÐйý³ÌÖоàÀëÆ½Ì¨×î´ó¸ß¶ÈµÄȡֵ·¶Î§ÔÚ2Ã×µ½3Ã×Ö®¼ä£®
·ÖÎö£º£¨1£©ÉèÖúÅܵÀËùÔÚµÄÅ×ÎïÏß·½³ÌΪf£¨x£©=a
0x
2+b
0x+c
0£¬ÓÉÌâÒ⣬ÖúÅܵÀÒ»¶ËµãA£¨0£¬4£©£¬ÁíÒ»¶ËµãC£¨3£¬1£©£¬µãB£¨2£¬0£©£¬µÃ³ö·½³Ì×飬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨2£©Éè·ÉÐй켣ËùÔÚÅ×ÎïÏß·½³ÌΪg£¨x£©=ax
2+bx+c£¬£¨a£¼0£©£¬ÓÉÌâÒâÖª

£¬ÓÉ´ËÈëÊÖÄÜÇó³ög£¨x£©ÓÐ×î´óÖµ£¬Ó÷ÉÐйý³ÌÖоàÀëÆ½Ì¨×î´ó¸ß¶È£¬ÀûÓò»µÈ¹ØÏµ¼´¿ÉµÃ³öÔ˶¯Ô±·ÉÐйý³ÌÖоàÀëÆ½Ì¨×î´ó¸ß¶ÈµÄȡֵ·¶Î§£®
µãÆÀ£º±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄʵÊýµÄȡֵ·¶Î§µÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâµÈ¼Ûת»¯Ë¼ÏëµÄºÏÀíÔËÓã®