精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{2x+2,x>-1}\end{array}\right.$,则不等式f(x)≥2的解集为(-∞,-1]∪[0,+∞).

分析 根据已知中分段函数的解析式,分段求出满足f(x)≥2的x范围,综合可得不等式的解集.

解答 解:当x≤-1时,不等式f(x)=2-2x≥2可化为:-2x≥1,解得:x≤$-\frac{1}{2}$,
故此时x≤-1;
当x>-1时,解不等式f(x)=2x+2≥2得:x≥0,
故此时x≥0,
综上所述,不等式f(x)≥2的解集为(-∞,-1]∪[0,+∞),
故答案为:(-∞,-1]∪[0,+∞)

点评 本题考查的知识点是分段函数的应用,分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.“sin2α-$\sqrt{3}$cos2α=1”是“α=$\frac{π}{4}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由命题p:“函数y=$\frac{1}{x}$是减函数”与q:“数列a、a2、a3,…是等比数列”构成的命题,下列判断正确的是(  )
A.p∨q为真,p∧q为假B.p∨q为假,p∧q为假C.p∨q为真,p∧q为假D.p∨q为假,p∧q为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{(x+a)^{2},x≤0}\\{x+\frac{1}{x}+a,x>0}\end{array}\right.$,若f(0)是f(x)的最小值,则实数a的取值范围[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若函数y=f[f(x)]-m存在三个零点,则实数m的取值范围是(  )
A.[0,1]B.(0,1]C.(-∞,0]D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知偶函数y=f(x)是定义域为R,当x≥0时,f(x)=$\left\{\begin{array}{l}{3sin\frac{π}{2}x,0≤x≤1}\\{{2}^{2-x}+1,x>1}\end{array}\right.$.函数g(x)=x2-2ax+a2-1(a∈R),若函数y=g[f(x)]有且仅有6个零点,则实数a的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow{a}$=(-2,1,3),$\overrightarrow{b}$=(-1,2,1),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),则实数λ的值为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{y≥0}\end{array}\right.$,则$\frac{y+1}{2x+2}$的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{5}{2}$]B.[$\frac{1}{3}$,5]C.[$\frac{2}{3}$,10]D.[-$\frac{1}{3}$,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A(1,2),B(3,3),C(7,-1),$\overrightarrow{BM}$=$\frac{1}{4}$$\overrightarrow{BC}$.
(1)求点M的坐标;
(2)证明:$\overrightarrow{OM}$∥$\overrightarrow{AB}$.

查看答案和解析>>

同步练习册答案