精英家教网 > 高中数学 > 题目详情
20.已知偶函数y=f(x)是定义域为R,当x≥0时,f(x)=$\left\{\begin{array}{l}{3sin\frac{π}{2}x,0≤x≤1}\\{{2}^{2-x}+1,x>1}\end{array}\right.$.函数g(x)=x2-2ax+a2-1(a∈R),若函数y=g[f(x)]有且仅有6个零点,则实数a的取值范围为(1,2).

分析 由g(x)=x2-2ax+a2-1=(x-a-1)(x-a+1)可知g[f(x)]=0可化为f(x)=a+1或f(x)=a-1;作函数f(x)的图象,从而可得$\left\{\begin{array}{l}{0<a-1≤1}\\{1<a+1<3}\end{array}\right.$或$\left\{\begin{array}{l}{1<a-1<3}\\{a+1=3}\end{array}\right.$;从而解得.

解答 解:∵g(x)=x2-2ax+a2-1=(x-a-1)(x-a+1),
∴g[f(x)]=0可化为f(x)=a+1或f(x)=a-1;
作函数f(x)的图象如下,

结合图象可知,$\left\{\begin{array}{l}{0<a-1≤1}\\{1<a+1<3}\end{array}\right.$或$\left\{\begin{array}{l}{1<a-1<3}\\{a+1=3}\end{array}\right.$;
即1<a<2,
故答案为:(1,2).

点评 本题考查了复合函数的应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某中学从高三男生中随机抽取100名学生的身高,将数据整理,得到的频率分布表如下所示.
(Ⅰ)求出频率分布表中①和②位置上相应的数据;
(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行体能测试,求第3,4,5组每组各抽取多少名学生进行测试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求:第4组中至少有一名学生被抽中的概率.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.00

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知底面为平行四边形的四棱锥P-ABCD中,平面MNGH与直线PB和直线AC平行,点E为PD的中点,点F在CD上,且DF:FC=1:2.
(1)求证:四边形MNGH是平行四边形;
(2)求作过EF作四棱锥P-ABCD的截面,使PB与截面平行(写出作图过程,不要求证明).
截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=-cos2x-2asinx+a,在区间[0,π]上有最小值-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{2x+2,x>-1}\end{array}\right.$,则不等式f(x)≥2的解集为(-∞,-1]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:不等式x2+8x+4≥ax在R上恒成立,命题q:方程ax2+6x+1=0有负根
(])若p为真,求a的取值范围;
(2)若q为真,求a的取值范围;
(3)若“p且q”为假,“p或q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若a,b∈{x||x|+|x+1|>1},且ab=1,则a+2b的最小值是$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在长方体OABC-O1A1B1C1中,OA=2,AB=3,AA1=2,E是BC的中点,求直线AO1与B1E所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正项等比数列{an}满足a5+a4-a3-a2=5,则a6+a7的最小值为(  )
A.32B.10+10$\sqrt{2}$C.20D.28

查看答案和解析>>

同步练习册答案