分析 由g(x)=x2-2ax+a2-1=(x-a-1)(x-a+1)可知g[f(x)]=0可化为f(x)=a+1或f(x)=a-1;作函数f(x)的图象,从而可得$\left\{\begin{array}{l}{0<a-1≤1}\\{1<a+1<3}\end{array}\right.$或$\left\{\begin{array}{l}{1<a-1<3}\\{a+1=3}\end{array}\right.$;从而解得.
解答 解:∵g(x)=x2-2ax+a2-1=(x-a-1)(x-a+1),
∴g[f(x)]=0可化为f(x)=a+1或f(x)=a-1;
作函数f(x)的图象如下,
,
结合图象可知,$\left\{\begin{array}{l}{0<a-1≤1}\\{1<a+1<3}\end{array}\right.$或$\left\{\begin{array}{l}{1<a-1<3}\\{a+1=3}\end{array}\right.$;
即1<a<2,
故答案为:(1,2).
点评 本题考查了复合函数的应用及数形结合的思想应用.
科目:高中数学 来源: 题型:解答题
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.050 |
| 第2组 | [165,170) | ① | 0.350 |
| 第3组 | [170,175) | 30 | ② |
| 第4组 | [175,180) | 20 | 0.200 |
| 第5组 | [180,185] | 10 | 0.100 |
| 合计 | 100 | 1.00 | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 32 | B. | 10+10$\sqrt{2}$ | C. | 20 | D. | 28 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com