精英家教网 > 高中数学 > 题目详情
5.已知命题p:不等式x2+8x+4≥ax在R上恒成立,命题q:方程ax2+6x+1=0有负根
(])若p为真,求a的取值范围;
(2)若q为真,求a的取值范围;
(3)若“p且q”为假,“p或q”为真,求a的取值范围.

分析 (1)根据二次函数的性质得到关于a的不等式,基础即可;
(2)通过讨论a的范围结合二次函数的性质求出a的范围即可;
(3)通过讨论p,q的真假,从而求出a的范围即可.

解答 解:(1)关于命题p:不等式x2+8x+4≥ax在R上恒成立,
即x2+(8-a)x+4≥0在R上恒成立,
∴△=(8-a)2-16≤0,解得:4≤a≤12,
若p为真,a∈[4,12];
(2)关于命题q:方程ax2+6x+1=0有负根
a≤0时,显然方程有负根,
a>0时,只需△=36-4a>0即可,解得:a<9,
综上,若q为真,a∈(-∞,9);
(3)若“p且q”为假,“p或q”为真,
则p,q一真一假,
p假q真时:a≤4,
p真q假时:9≤a≤12,
故a的范围是(-∞,4]∪[9,12].

点评 本题考查了二次函数的性质,考查复合命题的判断,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.定义在R上的函数f(x)对?x,y∈R都有f(x+y)=f(x)+f(y)且x>0时,恒有f(x)<0.
(1)证明f(x)是奇函数;
(2)证明f(x)是减函数;
(3)若f(3x•k)+f(3x-9x-2)>0对?x∈R恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的方程f(x)=c(c∈R)有两个实根m,m+6,则实数c的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知{an}为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=2n-1+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知偶函数y=f(x)是定义域为R,当x≥0时,f(x)=$\left\{\begin{array}{l}{3sin\frac{π}{2}x,0≤x≤1}\\{{2}^{2-x}+1,x>1}\end{array}\right.$.函数g(x)=x2-2ax+a2-1(a∈R),若函数y=g[f(x)]有且仅有6个零点,则实数a的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}为空间的一个基底,且$\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{OB}$=-3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{3}}$,$\overrightarrow{OC}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,能否以{$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$}作为空间的一组基底?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x0∈R,3${\;}^{{x}_{0}}$≤0;命题q:f(x)=lnx在区间(0,+∞)上是增函数,下列是真命题的是(  )
A.p∧¬qB.¬p∧¬qC.¬p∧qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点在圆x2+y2=4上,过椭圆的左顶点倾斜角为$\frac{π}{3}$的直线与圆x2+y2=4相切,则椭圆的离心率(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设P是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点,F1、F2是双曲线的两焦点,若|PF1|=3,则|PF2|=9.

查看答案和解析>>

同步练习册答案