精英家教网 > 高中数学 > 题目详情
10.已知正项等比数列{an}满足a5+a4-a3-a2=5,则a6+a7的最小值为(  )
A.32B.10+10$\sqrt{2}$C.20D.28

分析 设正项等比数列{an}的公比为q>1,由于a5+a4-a3-a2=5,可得(q2-1)(a3+a2)=5.因此a6+a7=q4(a3+a2)=$\frac{5{q}^{4}}{{q}^{2}-1}$=$5[({q}^{2}-1)+\frac{1}{{q}^{2}-1}]+10$,再利用基本不等式的性质即可得出.

解答 解:设正项等比数列{an}的公比为q>1,
∵a5+a4-a3-a2=5,
∴(q2-1)(a3+a2)=5.
则a6+a7=q4(a3+a2)=$\frac{5{q}^{4}}{{q}^{2}-1}$=$\frac{5({q}^{4}-1)+5}{{q}^{2}-1}$=$5[({q}^{2}-1)+\frac{1}{{q}^{2}-1}]+10$≥$5×2\sqrt{({q}^{2}-1)•\frac{1}{{q}^{2}-1}}$+10=20,当且仅当q2=2,即q=$\sqrt{2}$时取等号.
故选:C.

点评 本题考查了等比数列的通项公式及其性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知偶函数y=f(x)是定义域为R,当x≥0时,f(x)=$\left\{\begin{array}{l}{3sin\frac{π}{2}x,0≤x≤1}\\{{2}^{2-x}+1,x>1}\end{array}\right.$.函数g(x)=x2-2ax+a2-1(a∈R),若函数y=g[f(x)]有且仅有6个零点,则实数a的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求过原点且与y轴及圆(x-1)2+(y-2)2=1相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(1,0,0),B(0,1,0),C(0,0,2)
(1)若$\overrightarrow{DB}$∥$\overrightarrow{AC}$,$\overrightarrow{DC}$∥$\overrightarrow{AB}$,求点D的坐标;
(2)求到A,B两点距离相等的点P(x,y,z)的坐标应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A(1,2),B(3,3),C(7,-1),$\overrightarrow{BM}$=$\frac{1}{4}$$\overrightarrow{BC}$.
(1)求点M的坐标;
(2)证明:$\overrightarrow{OM}$∥$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设P是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点,F1、F2是双曲线的两焦点,若|PF1|=3,则|PF2|=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆周上有6个点,任取3个点可以做一个三角形,可得到三角形的个数(  )
A.6B.12C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(x)是偶函数,且在[0,+∞)上单调,则满足f(x)=f($\frac{x+3}{x+4}$)的所有x之和为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,若a1=2,an+1=1-$\frac{1}{{a}_{n}}$,则$\sum_{k=1}^{2014}$ak=$\frac{2015}{2}$.

查看答案和解析>>

同步练习册答案