精英家教网 > 高中数学 > 题目详情
若椭圆
x2
100
+
y2
36
=1
上一点P到其焦点F1的距离为6,则P到另一焦点F2的距离为
14
14
分析:根据椭圆的定义可得|PF1|+|PF2|=2a=20,结合P到其焦点F1的距离为6,可求P到另一焦点F2的距离.
解答:解:根据椭圆的定义可得|PF1|+|PF2|=2a=20
∵P到其焦点F1的距离为6,
∴|PF2|=20-6=14
即P到另一焦点F2的距离为14
故答案为:14.
点评:本题考查椭圆的定义,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
100
+
y2
25
=1
的上顶点为A,直线y=-4交椭圆E于点B,C(点B在点C的左侧),点P在椭圆E上.
(1)若点P的坐标为(6,4),求四边形ABCP的面积;
(2)若四边形ABCP为梯形,求点P的坐标;
(3)若
BP
=m•
BA
+n•
BC
(m,n为实数),求m+n的最大值.

查看答案和解析>>

同步练习册答案