精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x3-6x2+3x+t )ex,(t∈R,e为自然对数的底数).
(Ⅰ)若函数y=f(x)有三个极值点,求t的取值范围;
(Ⅱ)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立.求正整数m的最大值.
(I)f′(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
∵f(x)有三个极值点,∴x3-3x2-9x+t+3=0有三个根,
令g(x)=x3-3x2-9x+t+3,g′(x)=3x2-6x-9=3(x+1)(x-3)
∴g(x)在(-∞,-1),(3,+∞)上递增,(-1,3)上递减,
∵g(x)有三个零点,
g(-1)>0
g(3)<0

∴-8<t<24…(4分)
(II)不等式f(x)≤x,即(x3-6x2+3x+t)ex≤x,即t≤xe-x-x3+6x2-3x.
转化为存在实数t∈[0,2],使对任意的x∈[1,m],不等式t≤xe-x-x3+6x2-3x恒成立.
即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立.
即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立…(6分)
设φ(x)=e-x-x2+6x-3,则φ(x)=-g-x-2x+6.
设r(x)=φ(x)=-g-x-2x+6,则r′(x)=g-x-2,因为1≤x≤m,有r′(x)<0.
故r(x)在区间[1,m]上是减函数…(8分)
又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0
故存在x0∈(2,3),使得r(x0)=φ′(x0)=0.
当1≤x<x0时,有φ′(x)>0,当x>x0时,有φ′(x)<0.
从而y=φ(x)在区间[1,x0)上递增,在区间(x0,+∞)上递减…(10分)
又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0
φ(4)=e-4+5>0,φ(5)=e-5+2>0,φ(6)=e-6-3<0
所以当1≤x≤5时,恒有φ(x)>0;当x≥6时,恒有φ(x)<0;
故使命题成立的正整数m的最大值为5.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案