精英家教网 > 高中数学 > 题目详情

如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.

(Ⅰ)求证:四点A,I,H,E共圆;

(Ⅱ)若∠C=,求∠IEH的度数.

 

【答案】

(Ⅰ)由圆I与边AC相切于点E

IEAE; …………2分

结合IHAH,得

所以,四点A,I,H,E共圆. ………5分

 

 

(Ⅱ)由(Ⅰ)知四点A,I,H,E共圆,得,;…7分

中,

结合IHAH,得

所以.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,锐角△ABC的内心为D,过点A作直线BD的垂线,垂足为F,点E为内切圆D与边AC的切点.若∠C=50°,求∠DEF的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,锐角△ABC的内心为D,过点A作直线BD的垂线,垂足为F,点E为内切圆D与边AC的切点.
(Ⅰ)求证:A,D,F,E四点共圆;
(Ⅱ)若∠C=50°,求∠DEF的度数.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南郑州高三第一次质量预测理数学试卷(解析版) 题型:解答题

选修4—1:几何证明选讲如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.

(Ⅰ)求证:四点A,I,H,E共圆;

(Ⅱ)若∠C=,求∠IEH的度数.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南郑州高三第一次质量预测文科数学试卷(解析版) 题型:解答题

选修4—1:几何证明选讲

如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.

(Ⅰ)求证:四点A,I,H,E共圆;

(Ⅱ)若∠C=,求∠IEH的度数.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省镇平一高高三下学期第四次周考文科数学试卷 题型:解答题

(本小题满分10分)选修4-1:几何证明选讲

如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.

(Ⅰ)求证:四点A,I,H,E共圆;

(Ⅱ)若∠C=50°,求∠IEH的度数.

 

查看答案和解析>>

同步练习册答案