分析 根据向量的数量积和向量的垂直的条件即可得到关于λ的方程,解得即可.
解答 解:$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,
∴$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°=1×2×$\frac{1}{2}$=1,
∵$(λ\overrightarrow a+\overrightarrow b)⊥(2\overrightarrow a-λ\overrightarrow b)$,
∴(λ$\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-λ$\overrightarrow{b}$)=2λ|$\overrightarrow{a}$|2-λ|$\overrightarrow{b}$|2+(2-λ2)$\overrightarrow{a}•\overrightarrow{b}$=2λ-4λ+2-λ2=0,
解得λ=$-1±\sqrt{3}$,
故答案为:$-1±\sqrt{3}$,
点评 本题考查了向量的数量积和向量的垂直的条件,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)是增函数,则f′(x)>0 | |
| B. | 因为a>b(a,b∈R),则a+2i>b+2i(i是虚数单位) | |
| C. | α,β是锐角△ABC的两个内角,则sin α>cos β | |
| D. | A是三角形ABC的内角,若cos A>0,则此三角形为锐角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{5}{2}$ | B. | $\frac{5}{2}$ | C. | 0 | D. | $\frac{{5\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l1一定与l4垂直 | |
| B. | l1一定与l4平行 | |
| C. | l1一定与l4共面 | |
| D. | l1与l4的位置关系可能是平行,相交,或异面 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com