精英家教网 > 高中数学 > 题目详情
计算
(1) 
(2)lg-lg+lg12.5-log89•log98.
【答案】分析:(1)利用指数式和根的互化,把 等价转化为[(2]+[(3]-1,再由分数指数幂的运算法则进行计算.
(2)利用对数式的运算法则和性质把lg-lg+lg12.5-log89•log98等价转化为lg()-,由此能求出结果.
解答:(1)满分(6分)
解: 
=[(2]+[(3]-1
==2.
(2)满分(6分)
解:lg-lg+lg12.5-log89•log98
=lg()-
=lg10-1
=0.
点评:本题考查指数式和根的互化,考查分数指数幂的运算法则,考查对数式的运算法则和性质,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知n次多项式Pn(x)=a0xn+a1xn-1+…+an-1x+an
如果在一种算法中,计算x0k(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算Pn(x0)的值共需要
 
次运算.
下面给出一种减少运算次数的算法:P0(x0)=a0.Pn+1(x)=xPn(x)+ak+1(k=0,l,2,…,n-1).利用该算法,计算P3(x0)的值共需要6次运算,计算Pn(x0)的值共需要
 
次运算.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第l年所交纳的储备金就变为a1(1+r)n-1,第2年所交纳的储备金就变为a2(1+r)n-2…以Tn表示到第n年末所累计的储备金总额.
(1)写出Tn与Tn-1(n≥2)的递推关系式;
(2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

如图,为了计算北江岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=10km,AB=14km,∠BDA=60°,∠BCD=135°,求两景点B与C的距离。(假设A、B、C、D在同一平面内,测量结果保留整数;参考数据:≈l.414,≈1.732,≈2. 236)。

查看答案和解析>>

科目:高中数学 来源:2007-2008学年浙江省温州市瑞安市隆山高级中学高三(上)期中数学试卷(理科)(解析版) 题型:填空题

已知n次多项式Pn(x)=axn+a1xn-1+…+an-1x+an
如果在一种算法中,计算xk(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x)的值共需要9次运算(6次乘法,3次加法),那么计算Pn(x)的值共需要    次运算.
下面给出一种减少运算次数的算法:P(x)=a.Pn+1(x)=xPn(x)+ak+1(k=0,l,2,…,n-1).利用该算法,计算P3(x)的值共需要6次运算,计算Pn(x)的值共需要    次运算.

查看答案和解析>>

同步练习册答案