精英家教网 > 高中数学 > 题目详情
若a1>0,a1≠1,an+1=(n=1,2,…)
(1)求证:an+1≠an
(2)令a1=,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an
【答案】分析:(1)采用反证法证明,先假设两种相等,代入已知的等式中即可求出an的值为常数0或1,进而得到此数列为是0或1的常数列,与已知a1>0,a1≠1矛盾,所以假设错误,两种不相等;
(2)把n=1及a1=代入已知的等式即可求出a2的值,把n=2及a2的值代入已知的等式即可求出a3的值,把n=3及a3的值代入已知等式即可求出a4的值,把n=4及a4的值代入已知的等式即可求出a5的值,然后把求出的五项的值变形后,即可归纳总结得到这个数列的通项公式an
解答:解:(1)证明:若an+1=an
=an,解得an=0或1.
从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,
故an+1≠an成立.
(2)由a1=,得到a2===
a3===
a4===
a5===
…,
则an=(n∈N*).
点评:此题考查学生会利用反证法对命题进行证明的能力,会根据一组数据的特点归纳总结得出一般性的规律,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a1>0,a1≠1,an+1=
2an
1+an
(n=1,2,…)
(1)求证:an+1≠an
(2)令a1=
1
2
,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

若a1>0,a1≠1,an+1=
2an
1+an
(n=1,2,…)
(1)求证:an+1≠an
(2)令a1=
1
2
,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an
(3)证明:存在不等于零的常数p,使{
an+P
an
}
是等比数列,并求出公比q的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若a1>0,a1≠1,an+1=
2an
1+an
(n=1,2,…)
(1)求证:an+1≠an
(2)令a1=
1
2
,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an
(3)证明:存在不等于零的常数p,使{
an+P
an
}
是等比数列,并求出公比q的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省宁德市霞浦一中高二(下)第一次月考数学试卷(文科)(实验班)(解析版) 题型:解答题

若a1>0,a1≠1,an+1=(n=1,2,…)
(1)求证:an+1≠an
(2)令a1=,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an
(3)证明:存在不等于零的常数p,使是等比数列,并求出公比q的值.

查看答案和解析>>

同步练习册答案