精英家教网 > 高中数学 > 题目详情

我国加入WTO后,根据达成的协议,若干年内某产品关税与市场供应量的关系允许近似的满足:(其中为关税的税率,且为市场价格,为正常数),当时的市场供应量曲线如图:

(1)根据图象求的值;
(2)若市场需求量为,它近似满足.当时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元,求税率的最小值.

(1),(2).

解析试题分析:(1)求的值,需列两个独立条件,利用图象过两点:得方程组,注意隐含条件可避开讨论,(2)由“市场平衡价格”含义得出的函数关系式,这是一个二次函数,结合定义域可求出的最小值.
试题解析:(1)由图象知函数图象过:,   2分
,      4分
解得:;         6分
(2)当时,,即,      8分
化简得:       10分

,对称轴为

所以,当时,取到最大值:,即
解得:,即税率的最小值为.                     15分
答:税率的最小值为.                      16分
考点:函数解析式,函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex,x∈R.
(1)若直线y=kx+1与f(x)的反函数的图像相切,求实数k的值;
(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点,
(1)求实数a的值;
(2)如果当时,不等式恒成立,求实数m的最大值;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的),存在,使得,则称具有性质.
(1)已知函数,判断是否具有性质,并说明理由;
(2)已知函数 若具有性质,求的最大值;
(3)若函数的定义域为,且的图象连续不间断,又满足
求证:对任意,函数具有性质.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)判断函数的单调性并用定义证明;
(2)令,求在区间的最大值的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,当;当.
(Ⅰ)求函数在(-1,1)上的单调区间;
(Ⅱ)若,求函数上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)解不等式
(2)若.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的导函数的图像与直线平行,且处取得极小值.设.
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

同步练习册答案