精英家教网 > 高中数学 > 题目详情
求以(1,-1)为中点的抛物线y2=8x的弦所在直线的方程.

解:设弦的两端点分别为A(x1,y1),B(x2,y2)

kAB=                   ⑤

由①-②,

得(y2+y1)(y2-y1)=8(x2-x1),

.

将④⑤代入上式可得kAB=-4.

所以弦所在直线方程为y+1=-4(x-1),

即4x+y-3=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司在产品上市前需对产品做检验,公司将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(I )若公司库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;
(II)若该公司发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收,分别求出该商家抽出不合格产品为1件和2件的概率,并求该商家拒收这批产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)(选修4-4:坐标系与参数方程)在直角坐标系中,直线l的参数方程为
x=-1+
3
5
t
y=-1+
4
5
t
t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=
2
sin(θ+
π
4
)

(I)求曲线C的直角坐标方程;
(II)求直线l被曲线C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c=3,
(I)A={1,2,3,4,5},在集合A中任取元素分别作为a,b的值(a,b的值可以相等,也可以不相等),求以a,b,c为三边长且能构成三角形的概率;
(II)B=[1,5],在区间B中任取元素分别作为a,b的值(a,b的值可以相等也可以不相等),求以a,b,c为三边长且能构成三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高考模拟预测数学文试卷(解析版) 题型:解答题

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(I)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;

(II)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n.若以 作为点P的坐标,求点P落在区域内的概率.

【解析】第一问利用古典概型概率求解所有的基本事件数共12种,然后利用方程有实根,则满足△=4a2-4b2≥0,即a2≥b2。,这样求得事件发生的基本事件数为6种,从而得到概率。第二问中,利用所有的基本事件数为16种。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。在求解满足的基本事件数为(1,1) (2,1)  (2,2) (3,1) 共4种,结合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12种。

有实根, ∴△=4a2-4b2≥0,即a2≥b2

记“有实根”为事件A,则A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6种。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。

记“点P落在区域内”为事件B,则B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4种。∴PB.=

 

查看答案和解析>>

同步练习册答案