精英家教网 > 高中数学 > 题目详情
8.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,$BC=EF=\frac{1}{2}AB$,∠BAD=60°,G为BC的中点.
(Ⅰ)求证:FG∥平面BED;
(Ⅱ)求证:平面BED⊥平面AED.

分析 (1)令BD中点为O,连结GO,EO,只需证明FG∥EO即可,
(2)只需证明BD⊥面EAD即可.

解答 解:(1)令BD中点为O,∵GO∥AB,且$GO=\frac{1}{2}AB$,EF∥AB,且$EF=\frac{1}{2}AB$,
∴GO∥EF,且GO=EF,四边形GOEF是平行四边形,得FG∥EO,
又∵FG?面BED,EO?面BED,∴FG∥面BED.
(2)∵$∠BAO={60°},BC=\frac{1}{2}AB$,
∴∠BDA=90°,即BD⊥AD;
又∵面AED⊥面ABCD,且交线为AD,
∴BD⊥面EAD,面BED⊥面EAD.

点评 本题考查了线面平行,面面垂直的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知等比数列{an}的前n项和为Sn,若$\frac{S_4}{a_4}=\frac{S_2}{a_2}$,则$\frac{{{S_{2016}}}}{S_1}$等于(  )
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若平面α⊥平面β,且平面α内的一条直线a垂直于平面β内的一条直线b,则(  )
A.直线a必垂直于平面βB.直线b必垂直于平面α
C.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),长轴的右端点与抛物线C2:y2=8x的焦点F重合,且椭圆C1的离心率是$\frac{\sqrt{3}}{2}$.
(1)求椭圆C1的标准方程;
(2)过F作直线l交抛物线C2于A,B两点,过F且与直线l垂直的直线交椭圆C1于另一点C,求△ABC面积的最小值,以及取到最小值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线m,n和平面α,下列推理正确的是(  )
A.$\left.{\begin{array}{l}{m⊥n}\\{n?α}\end{array}}\right\}⇒m⊥α$B.$\left.{\begin{array}{l}{m⊥n}\\{n⊥α}\end{array}}\right\}⇒m∥α$C.$\left.{\begin{array}{l}{m⊥α}\\{n∥α}\end{array}}\right\}⇒m⊥n$D.$\left.{\begin{array}{l}{m∥α}\\{n?α}\end{array}}\right\}⇒m∥n$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,⑤MN与 A1C1成30°.其中有可能成立的结论的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了得到函数y=sin3x-$\sqrt{3}$cos3x的图象(  )
A.只要将函数y=2sin3x的图象向右平移$\frac{π}{3}$个单位
B.只要将函数y=sin3x的图象向右平移$\frac{π}{3}$个单位
C.只要将函数y=2sin3x的图象向右平移$\frac{π}{9}$个单位
D.只要将函数y=sin3x的图象向右平移$\frac{π}{9}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设抛物线y2=16x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且2$\overrightarrow{BP}$=$\overrightarrow{PA}$,则|AF|+2|BF|=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}lnx,x>1\\{2^{-x+1}},x≤1\end{array}\right.$,若方程$f(x)-ax=\frac{5}{2}$有3个不同的解,则a的取值范围是(  )
A.$(-∞,-\frac{5}{2}]$B.$(-\frac{5}{2},-\frac{3}{2}]$C.$[-\frac{5}{2},-\frac{3}{2}]$D.$(-\frac{3}{2},+∞)$

查看答案和解析>>

同步练习册答案