精英家教网 > 高中数学 > 题目详情
点Q在抛物线y2=4x上,点P(a,0)(满足|PQ|≥|a|恒成立,则a的取值范围是(  )
A、(0,2)B、[0,2]C、(-∞,2]D、(-∞,0)
分析:设出点的坐标,利用|PQ|≥|a|,可得t2+16-8a≥0,故t2≥8a-16恒成立,由此可求a的取值范围.
解答:解:设Q(
t2
4
,t),
由|PQ|≥|a|得(
t2
4
-a)2+t2≥a2
所以t2(t2+16-8a)≥0,
即t2+16-8a≥0,
故t2≥8a-16恒成立,
所以8a-16≤0,
所以a≤2,
故a的取值范围是 (-∞,2].
故选C.
点评:本题考查抛物线的运用,考查分离参数方法的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(1)求点P和Q的坐标;
(2)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上两定点C(-1,0),D(1,0)和一定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)问点P在什么曲线上,并求出曲线的轨迹方程M;
(2)又已知点A为抛物线y2=2px(p>0)上一点,直线DA与曲线M的交点B不在y轴的右侧,且点B不在x轴上,并满足
AB
=2
DA
,求p
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,F是抛物线x2=2py(p>0)的焦点,点R(1,4)为抛物线内一定点,点Q为抛物线上一动点,|QR|+|QF|的最小值为5.
(1)求抛物线方程;
(2)已知过点P(0,-1)的直线l与抛物线x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)两点,l1、l2分别是该抛物线在A、B两点处的切线,M、N分别是l1、l2与直线y=-1的交点.求直线l的斜率的取值范围并证明|PM|=|PN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武昌区模拟)已知数列{an}的各项均为正数,a1=3,点A(an
an+1
)
在抛物线y2=x+4上,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量的坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:022

已知定点A(3,2)在抛物线y2=2px(p>0)的内部, F为抛物线的焦点, 点Q在抛物线上移动, 当│AQ│+│QF│取最小值4时, p的值等于_________

查看答案和解析>>

同步练习册答案