精英家教网 > 高中数学 > 题目详情
若函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b-a=
 
考点:二次函数的性质
专题:函数的性质及应用
分析:该二次函数的对称轴为x=-
a+2
2
=1,所以a=-4,因为区间[a,b]即[-4,b]关于x=1对称,所以1-(-4)=b-1,∴b=6,所以b-a=10.
解答: 解:根据已知条件知,该二次函数的对称轴-
a+2
2
=1
,∴a=-4,则:
1-a=b-1,即5=b-1,b=6,∴b-a=10.
故答案为:10.
点评:考查二次函数的对称性,求对称轴的公式:x=-
b
2a
,以及区间关于某直线对称时的特点:两端点到对称轴距离相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当0<x<4时,y=x(8-2x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x2-6x+8的定义域为x∈[1,a],值域为[-1,3],则a的取值范围是(  )
A、(1,3)
B、(1,5)
C、(3,5)
D、[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

某校数学兴趣班将10名成员平均分为甲、乙两组进行参赛选拔,在单位时间内每个同学做竞赛题目若干,其中做对题目的个数如下表:

同学
个数
组别
1号2号3号[4号5号
甲组457910
乙组56789
(Ⅰ)分别求出甲、乙两组同学在单位时间内做对题目个数的平均数及方差,并由此分析这两组的数学水平;
(Ⅱ)学校教务部门从该兴趣班的甲、乙两组中各随机抽取1名学生,对其进行考查,若两人做对题目的个数之和超过12个,则称该兴趣班为“优秀兴趣班”,求该兴趣班获“优秀兴趣班”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2+n
(1)求数列{an}的通项公式;
(2)令bn=an2n(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在试验中随机事件A的频率p=
nA
n
满足(  )
A、0<P≤1
B、0≤p<1
C、0<p<1
D、0≤p≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的中心在坐标原点,长轴的端点为A,B,右焦点为F,且,
AF
FB
=1,|
OF
|=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点F作直线l1,l2,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且l1⊥l2,求四边形MPNQ面积取最小值以及直线l1,l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2+cx+d是定义在R上的函数,其图象交x轴于A、B、C三点,若点B坐标为(2,0),且f(x)在[-1,0]和[4,5]上有相同单调性,在[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)求|AC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
,其中m∈Z,则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上有函数f(x)=|x-{x}|,(x∈R).
(1)求{4},{-
1
2
},{-8.3}的值;
(2)求f(4),f(-
1
2
),f(-8.3)的值;
(3)对于函数f(x),现给出如下一些判断:
①函数y=f(x)是偶函数;②函数y=f(x)是周期函数;③函数y=f(x)在区间(-
1
2
1
2
]上单调递增;④函数y=f(x)的图象关于直线x=k+
1
2
,(k∈z)对称.
请你将以上四个判断中正确的结论全部选择出来,并选择其中一个加以证明.

查看答案和解析>>

同步练习册答案