精英家教网 > 高中数学 > 题目详情
设f(x)=ex-ax+,x已知斜率为k的直线与y=f(x)的图象交于A(x1,y1),B(x2,y2)(x1x2)两点,若对任意的a<一2,k>m恒成立,则m的最大值为(      )
A.-2+B.0C.2+D.2+2
D

试题分析:当时,上是增函数.
.因为斜率为k的直线与y= (x)的图象交于A(x1,y1),B(x2,y2)(x1x2)两点,所以.又恒成立,所以.选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中是自然对数的底数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中为常数.
(Ⅰ)若函数是区间上的增函数,求实数的取值范围;
(Ⅱ)若时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知函数
(1)若,求曲线在点处的切线方程;
(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意,有不等式
恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)研究函数的极值点;
(2)当时,若对任意的,恒有,求的取值范围;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调减区间为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数(m为常数)图象上A处的切线与平行,则点A的横坐标是(  )
A.B.1C.D.

查看答案和解析>>

同步练习册答案