精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数f(x)的定义域为$[-\frac{π}{6},\frac{π}{4}]$,求单调递减区间和值域.

分析 (Ⅰ)利用两角和差的正弦公式结合辅助角公式进行化简即可求f(x)的最小正周期;
(Ⅱ)根据函数f(x)的定义域为$[-\frac{π}{6},\frac{π}{4}]$,结合函数单调性和值域之间的关系即可求单调递减区间和值域.

解答 解:(Ⅰ)∵$f(x)=4cosxsin(x+\frac{π}{6})-1=4cosx(sinxcos\frac{π}{6}+cosxsin\frac{π}{6})-1$
=$4cosx(\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx)-1=2\sqrt{3}sinxcosx+2{cos^2}x-1$=$\sqrt{3}sin2x+cos2x=2sin(2x+\frac{π}{6})$…(4分)
所以f(x)的最小正周期为π.…(6分)
(Ⅱ)①令$2kπ+\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,则$kπ+\frac{π}{6}≤x≤kπ+\frac{2π}{3}$,当k=0时有$\frac{π}{6}≤x≤\frac{2π}{3}$,
又∵$x∈[-\frac{π}{6},\frac{π}{4}]$,∴函数f(x)的单调递减区间为$[\frac{π}{6},\frac{π}{4}]$;…(9分)
②由$-\frac{π}{6}≤x≤\frac{π}{4}$得$-\frac{π}{6}≤2x+\frac{π}{6}≤\frac{2π}{3}$,于是
当$2x+\frac{π}{6}=\frac{π}{2}$,即$x=\frac{π}{6}$,f(x)取的最大值为2;
当$2x+\frac{π}{6}=-\frac{π}{6}$,即$x=-\frac{π}{6}$,f(x)取的最小值为-1.
∴函数f(x)的值域为[-1,2]…(12分)

点评 本题主要考查三角函数图象和性质,根据辅助角公式进行化简是解决本题的关键.考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3+bx2+cx+d的导函数f'(x)的图象如图所示,则f(x)的图象最有可能的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.因式分解:2x2-x-5=2(x-$\frac{1-\sqrt{41}}{4}$)(x-$\frac{1+\sqrt{41}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知矩形ABCD的顶点都在球O的球面上,AB=6,BC=2$\sqrt{3}$,四棱锥O-ABCD的体积为8$\sqrt{3}$,则球O的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=(x-2)2|x-a|在区间[2,4]恒满足不等式xf′(x)≥0,则实数a的取值范围是(  )
A.(-∞,5]B.[2,5]C.[2,+∞)D.(-∞,2]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a,b,c∈R,函数f(x)=ax2+bx+c.
(1)当a>0,c=0时,判断函数H(x)=f[f(x)]-f(x)零点个数,并说明理由;
(2)设g(x)=cx2+bx+a,若对任意|x|≤1,都有|f(x)|≤1成立;则对任意|x|≤1,恒有|g(x)|≤M成立,求实数M的最小值及相应的a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x2+ax+b,a,b∈R,若2a+b=-4,证明:|f(x)|在区间[0,4]上的最大值M(a)≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等比数列{an}中,an=54.前n项和前2n项和分别为Sn=80,S2n=6560.
(1)求首项a1和公比q;
(2)若A1=$\frac{π}{4}$,数列{An}满足An-An-1=a1•$\frac{π}{6}$,(n≥2),设cn=tanAntanAn-1.求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=ln(x-1)-$\frac{3}{x}$的零点在区间(k,k+1)(k∈Z)上,则k的值为3.

查看答案和解析>>

同步练习册答案