精英家教网 > 高中数学 > 题目详情
12.等比数列{an}中,an=54.前n项和前2n项和分别为Sn=80,S2n=6560.
(1)求首项a1和公比q;
(2)若A1=$\frac{π}{4}$,数列{An}满足An-An-1=a1•$\frac{π}{6}$,(n≥2),设cn=tanAntanAn-1.求数列{cn}的前n项和Tn

分析 (1)设等比数列{an}的公比为q≠1,由an=54,Sn=80,S2n=6560.可得:${a}_{1}{q}^{n-1}$=54,$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=80,$\frac{{a}_{1}(1-{q}^{2n})}{1-q}$=6560,可得qn=81,解出即可得出.
(2)由A1=$\frac{π}{4}$,数列{An}满足An-An-1=a1•$\frac{π}{6}$=$\frac{π}{3}$,(n≥2),可得An=$\frac{4n-1}{12}π$.由tan(An-An-1)=$\frac{tan{A}_{n}-tan{A}_{n-1}}{1+tan{A}_{n}tan{A}_{n-1}}$=tan$\frac{π}{3}$,可得cn=tanAntanAn-1=$\frac{1}{\sqrt{3}}$(tanAn-tanAn-1)-1,利用“累加求和”即可得出.

解答 解:(1)设等比数列{an}的公比为q≠1,∵an=54,Sn=80,S2n=6560.
∴${a}_{1}{q}^{n-1}$=54,$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=80,$\frac{{a}_{1}(1-{q}^{2n})}{1-q}$=6560,可得qn=81,
解得a1=2,q=3,n=4.
(2)∵A1=$\frac{π}{4}$,数列{An}满足An-An-1=a1•$\frac{π}{6}$=$\frac{π}{3}$,(n≥2),
∴An=$\frac{π}{4}+(n-1)×\frac{π}{3}$=$\frac{4n-1}{12}π$.
∵tan(An-An-1)=$\frac{tan{A}_{n}-tan{A}_{n-1}}{1+tan{A}_{n}tan{A}_{n-1}}$=tan$\frac{π}{3}$=$\sqrt{3}$,
∴cn=tanAntanAn-1=$\frac{1}{\sqrt{3}}$(tanAn-tanAn-1)-1,
∴数列{cn}的前n项和Tn=$\frac{\sqrt{3}}{3}$[(tanA2-tanA1)+(tanA3-tanA2)+…+tan(An-An-1)]-n
=$\frac{\sqrt{3}}{3}$(tanAn-tanA1)-n
=$\frac{\sqrt{3}}{3}$$(tan\frac{4n-1}{12}π-1)$-n.

点评 本题考查了递推关系、等差数列与等比数列的通项公式及其求和公式、“累加求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设命题p:x2-5x+6≤0;命题q:(x-m)(x-m-2)≤0,若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数f(x)的定义域为$[-\frac{π}{6},\frac{π}{4}]$,求单调递减区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AB=2$\sqrt{3}$,BC=2,AD=3,平面ABD1与棱CC1交于点P.
(Ⅰ)求证:BP∥AD1
(Ⅱ)若直线A1P与平面BDP所成角的正弦值为$\frac{3\sqrt{10}}{10}$,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知2cos(B-C)=1+4sinBsinC.
(1)求角A的大小;
(2)若a=2$\sqrt{7}$,△ABC的面积2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若数列{an}满足$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}$+$\frac{{{a_{n+1}}}}{a_n}$=k(k为常数),则称数列{an}为等比和数列,k称为公比和.已知数列{an}是以3为公比和的等比和数列,其中a1=1,a2=2,则a2015=21007

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{x}+3,x≥0\\ ax+b,x<0\end{array}$满足条件:对于[0,3],?唯一的x2∈R,使得f(x1)=f(x2).当f(2a)=f(3b)成立时,则实数a+b=(  )
A.$\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{2}$+3D.$-\frac{{\sqrt{6}}}{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{15}}{4}$,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2$\sqrt{15}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设圆T:(x-2)2+y2=$\frac{4}{9}$,过椭圆的上顶点M作圆T的两条切线交椭圆于E、F两点,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点P(-2,1)引抛物线y2=4x的两条切线,切点分别为A,B,F是抛物线y2=4x的焦点,则直线PF与直线AB的斜率之和为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案