1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{15}}{4}$£¬F1£¬F2ÊÇÍÖÔ²µÄÁ½¸ö½¹µã£¬PÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬ÇÒ¡÷PF1F2µÄÖܳ¤ÊÇ8+2$\sqrt{15}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÔ²T£º£¨x-2£©2+y2=$\frac{4}{9}$£¬¹ýÍÖÔ²µÄÉ϶¥µãM×÷Ô²TµÄÁ½ÌõÇÐÏß½»ÍÖÔ²ÓÚE¡¢FÁ½µã£¬ÇóÖ±ÏßEFµÄбÂÊ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²ÀëÐÄÂʵõ½a£¬cµÄ¹ØÏµ£¬ÔÙÓÉ¡÷PF1F2µÄÖܳ¤£¬µÃa£¬cµÄÁíÒ»¹ØÏµ£¬ÁªÁ¢ÇóµÃa£¬cµÄÖµ£¬´úÈëÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©ÍÖÔ²µÄÉ϶¥µãΪM£¨0£¬1£©£¬Éè¹ýµãMÓëÔ²TÏàÇеÄÖ±Ïß·½³ÌΪy=kx+1£¬ÓÉÖ±Ïßy=kx+1ÓëÔ²TÏàÇпÉÖª$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$=$\frac{2}{3}$£¬¼´32k2+36k+5=0£¬ÓɸùÓëϵÊý¹ØÏµµÃµ½k1+k2=-$\frac{9}{8}$£¬k1k2=$\frac{5}{32}$£¬ÔÙÁªÁ¢Ò»ÇÐÏß·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃEµÄ×ø±ê£¬Í¬ÀíÇóµÃF×ø±ê£¬ÀûÓÃбÂʹ«Ê½µÃµ½kEF£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬e=$\frac{c}{a}$=$\frac{\sqrt{15}}{4}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$£¬¿ÉÖªa=4b£¬c=$\sqrt{15}$b£¬
¡ß¡÷PF1F2µÄÖܳ¤ÊÇ8+2$\sqrt{15}$£¬¡à2a+2c=8+2$\sqrt{15}$£¬
¡àa=4£¬b=1£¬
¡àËùÇóÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{16}$+y2=1   ¡­£¨4·Ö£©
£¨¢ò£©ÍÖÔ²µÄÉ϶¥µãΪM£¨0£¬1£©£¬ÓÉÌâÖª¹ýµãMÓëÔ²TÏàÇеÄÖ±ÏßÓÐбÂÊ£¬
ÔòÉèÆä·½³ÌΪl£ºy=kx+1£¬ÓÉÖ±Ïßy=kx+1ÓëÔ²TÏàÇпÉÖª$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$=$\frac{2}{3}$£¬
¼´32k2+36k+5=0£¬¡àk1+k2=-$\frac{9}{8}$£¬k1k2=$\frac{5}{32}$£¬¡­£¨6·Ö£©
ÓÉ$\left\{\begin{array}{l}{y={k}_{1}x+1}\\{\frac{{x}^{2}}{16}+{y}^{2}=1}\end{array}\right.$µÃ£¨1+16k12£©x2+32k1x=0£¬
¡àxE=-$\frac{32{k}_{1}}{1+16{{k}_{1}}^{2}}$£®
 Í¬ÀíxF=-$\frac{32{k}_{2}}{1+16{{k}_{2}}^{2}}$        ¡­£¨9·Ö£©
kEF=$\frac{{y}_{E}-{y}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{{k}_{1}{x}_{E}-{k}_{2}{x}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{{k}_{1}+{k}_{2}}{1-16{k}_{1}{k}_{2}}$=$\frac{3}{4}$
¹ÊÖ±ÏßEFµÄбÂÊΪ$\frac{3}{4}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÔ²£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ö±ÏßÓëÔ²ÏàÇеÄÌõ¼þ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª¾ØÐÎABCDµÄ¶¥µã¶¼ÔÚÇòOµÄÇòÃæÉÏ£¬AB=6£¬BC=2$\sqrt{3}$£¬ËÄÀâ×¶O-ABCDµÄÌå»ýΪ8$\sqrt{3}$£¬ÔòÇòOµÄ±íÃæ»ýΪ64¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®µÈ±ÈÊýÁÐ{an}ÖУ¬an=54£®Ç°nÏîºÍǰ2nÏîºÍ·Ö±ðΪSn=80£¬S2n=6560£®
£¨1£©ÇóÊ×Ïîa1ºÍ¹«±Èq£»
£¨2£©ÈôA1=$\frac{¦Ð}{4}$£¬ÊýÁÐ{An}Âú×ãAn-An-1=a1•$\frac{¦Ð}{6}$£¬£¨n¡Ý2£©£¬Éècn=tanAntanAn-1£®ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬a2k=a2k-1+£¨-1£©k£¬a2k+1=a2k+2k£¨k¡ÊN*£©£¬Ôò{an}µÄǰ60ÏîµÄºÍS60=232-94£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôº¯Êýf£¨x£©£¨x¡ÊR£©ÊÇÖÜÆÚΪ4µÄÆæº¯Êý£¬ÇÒÔÚ[0£¬2]ÉϵĽâÎöʽΪf£¨x£©=$\left\{\begin{array}{l}x£¨1-x£©£¬0¡Üx¡Ü1\\ sin¦Ðx£¬1£¼x¡Ü2\end{array}$£¬Ôòf£¨$\frac{15}{2}$£©+f£¨$\frac{20}{3}$£©=$\frac{{2\sqrt{3}-1}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=ex+ae-xΪżº¯Êý£¬Ôòf£¨x-1£©£¾$\frac{{{e^4}+1}}{e^2}$µÄ½â¼¯Îª£¨-¡Þ£¬-1£©¡È£¨3£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èôº¯Êýf£¨x£©=ln£¨x-1£©-$\frac{3}{x}$µÄÁãµãÔÚÇø¼ä£¨k£¬k+1£©£¨k¡ÊZ£©ÉÏ£¬ÔòkµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£ºÔÚ¡÷ABCÖУ¬DΪAB±ßÉÏÒ»µã£¬DA=DC£¬ÒÑÖª¡ÏB=$\frac{¦Ð}{4}$£¬BC=3
£¨1£©Èô¡÷BCDΪÈñ½ÇÈý½ÇÐΣ¬DC=$\sqrt{6}$£¬Çó½ÇAµÄ´óС£»
£¨2£©Èô¡÷BCDµÄÃæ»ýΪ$\frac{3}{2}$£¬Çó±ßABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèF1£¬F2·Ö±ðΪÍÖÔ²C1£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÓëË«ÇúÏßC2£º$\frac{x^2}{a_1^2}$-$\frac{y^2}{b_1^2}$=1£¨a1£¾0£¬b1£¾0£©µÄ¹«¹²½¹µã£¬ËüÃÇÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãM£¬¡ÏF1MF2=90¡ã£¬ÈôÍÖÔ²µÄÀëÐÄÂÊe=$\frac{3}{4}$£¬ÔòË«ÇúÏßC2µÄÀëÐÄÂÊe1Ϊ£¨¡¡¡¡£©
A£®$\frac{9}{2}$B£®$\frac{{3\sqrt{2}}}{2}$C£®$\frac{3}{2}$D£®$\frac{5}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸