精英家教网 > 高中数学 > 题目详情
16.若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}x(1-x),0≤x≤1\\ sinπx,1<x≤2\end{array}$,则f($\frac{15}{2}$)+f($\frac{20}{3}$)=$\frac{{2\sqrt{3}-1}}{4}$.

分析 利用函数的奇偶性以及函数的周期性,化简所求的表达式,求解函数值即可.

解答 解:函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}x(1-x),0≤x≤1\\ sinπx,1<x≤2\end{array}$,
则f($\frac{15}{2}$)+f($\frac{20}{3}$)=f(16-$\frac{1}{2}$)+f(8-$\frac{4}{3}$)=f(-$\frac{1}{2}$)+f(-$\frac{4}{3}$)=-f($\frac{1}{2}$)-f($\frac{4}{3}$)=-$\frac{1}{2}(1-\frac{1}{2})$-sin$\frac{4π}{3}$=-$\frac{1}{4}$+$\frac{\sqrt{3}}{2}$=$\frac{{2\sqrt{3}-1}}{4}$.
故答案为:$\frac{{2\sqrt{3}-1}}{4}$.

点评 本题考查分段函数的应用,函数的周期性以及函数的奇偶性的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.用一个与球心距离为1的平面去截球,所得截面的面积为π,则球的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知2cos(B-C)=1+4sinBsinC.
(1)求角A的大小;
(2)若a=2$\sqrt{7}$,△ABC的面积2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{x}+3,x≥0\\ ax+b,x<0\end{array}$满足条件:对于[0,3],?唯一的x2∈R,使得f(x1)=f(x2).当f(2a)=f(3b)成立时,则实数a+b=(  )
A.$\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{2}$+3D.$-\frac{{\sqrt{6}}}{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={x|-4≤x<2},集合N={x|2x<$\frac{1}{4}$},则M∩N中所含整数的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{15}}{4}$,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2$\sqrt{15}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设圆T:(x-2)2+y2=$\frac{4}{9}$,过椭圆的上顶点M作圆T的两条切线交椭圆于E、F两点,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某培训机构对沈阳市两所高中的学生是否愿意参加自主招生培训的情况进行问卷调查和考试测验,从两所学校共随机抽取100位同学进行调查,统计结果如表:
自招
学校
愿意不愿意
A学校4610
B学校2420
(1)判断能否在犯错误的概率不超过0.01的前提下认为是否愿意参加自主招生培训与学校有关?
(2)考试测验中分客观题和主观题,客观题共有8道,每道分值5分,学生李华答对每道客观题的概率均为0.8.主观题共有8道,每道分值12分,须随机抽取5道主观题作答,其中李华完全会答的有4道,不完全会的有4道,不完全会的每道主观题得分S的概率满足:P(S=3k)=$\frac{k}{6}$,k=1,2,3,假设解答各题之间没有影响.
①对于一道不完全会的主观题,李华得分的数学期望是多少?
②求李华在本次测验中得分ξ的数学期望.
临界值参考表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
参考公式:k=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若变量x,y满足条件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$,且z=2x+y的最小值为-6,则k=(  )
A.3B.-3C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx,g(x)=f(x)+x2-3x.
(1)求函数g(x)的图象在点(1,g(1))处的切线方程;
(2)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2)(x1<x2),证明:$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

同步练习册答案