精英家教网 > 高中数学 > 题目详情
6.用一个与球心距离为1的平面去截球,所得截面的面积为π,则球的表面积为(  )
A.B.C.12πD.16π

分析 由已知中一个与球心距离为1的平面截球所得的圆面面积为π,我们可以求出该圆的半径,其中根据球半径、截面圆半径及球心距构成直角三角形,满足勾股定理,我们可以求出球半径,进而代入球的表面积公式,即可得到该球的表面积.

解答 解:由已知中与球心距离为1的平面截球所得的圆面面积为π,
故该圆的半径为1,
故球的半径为$\sqrt{2}$,
故该球的表面积S=4πR2=8π
故选:B.

点评 本题考查的知识点是球的表面积,其中根据球半径、截面圆半径及球心距构成直角三角形,满足勾股定理,求出球的半径是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.从编号为1,2,3,4的四个小球中任选两个球,则选出的两个球数字之和大于等于5的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x)=$\frac{e^x}{{x}^{2}}$+lnx-$\frac{2k}{x}$,若f′(1)=1,则k=(  )
A.$\frac{e}{2}$B.$\frac{e}{3}$C.-$\frac{e}{2}$D.-$\frac{e}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.因式分解:2x2-x-5=2(x-$\frac{1-\sqrt{41}}{4}$)(x-$\frac{1+\sqrt{41}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在极坐标系中,已知曲线C:ρ=$2\sqrt{2}$sin(θ-$\frac{π}{4}$),P为曲线C上的动点,定点Q(1,$\frac{π}{4}$).
(Ⅰ)将曲线C的方程化成直角坐标方程,并说明它是什么曲线;
(Ⅱ)求P、Q两点的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知矩形ABCD的顶点都在球O的球面上,AB=6,BC=2$\sqrt{3}$,四棱锥O-ABCD的体积为8$\sqrt{3}$,则球O的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=(x-2)2|x-a|在区间[2,4]恒满足不等式xf′(x)≥0,则实数a的取值范围是(  )
A.(-∞,5]B.[2,5]C.[2,+∞)D.(-∞,2]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x2+ax+b,a,b∈R,若2a+b=-4,证明:|f(x)|在区间[0,4]上的最大值M(a)≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}x(1-x),0≤x≤1\\ sinπx,1<x≤2\end{array}$,则f($\frac{15}{2}$)+f($\frac{20}{3}$)=$\frac{{2\sqrt{3}-1}}{4}$.

查看答案和解析>>

同步练习册答案