分析 (1)求得g(x)的解析式和导数,可得切线的斜率和切点,由点斜式方程可得切线的方程;
(2)运用两点的斜率公式可得k的关系式,运用分析法证明,即证$\frac{{{x_2}-{x_1}}}{x_2}<ln\frac{x_2}{x_1}<\frac{{{x_2}-{x_1}}}{x_1}$,令$t=\frac{x_2}{x_1}({t>1})$,只需证1-$\frac{1}{t}$<lnt<t-1,令K(t)=lnt-t+1(t>1),再令h(t)=lnt-1+$\frac{1}{t}$,求出导数,判断符号,可得单调性,即可得证.
解答 解:(1)g(x)=lnx+x2-3x,
可得导数$g'(x)=\frac{1}{x}+2x-3$,
在点(1,g(1))处的切线斜率为g′(1)=0,g(1)=-2,
可得切线方程为y=-2;
(2)由题意可得k=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{ln{x}_{2}-ln{x}_{1}}{{x}_{2}-{x}_{1}}$,
要证原不等式成立只需证$\frac{1}{x_2}<\frac{{ln{x_2}-ln{x_1}}}{{{x_2}-{x_1}}}<\frac{1}{x_1}$,
由x2>x1,即证$\frac{{{x_2}-{x_1}}}{x_2}<ln\frac{x_2}{x_1}<\frac{{{x_2}-{x_1}}}{x_1}$,
令$t=\frac{x_2}{x_1}({t>1})$,只需证1-$\frac{1}{t}$<lnt<t-1,
令K(t)=lnt-t+1(t>1),$K'(t)=\frac{1}{t}-1<0$
可得K(t)在(1,+∞)上单调递减,K(t)<K(1)=0成立,
即为lnt<t-1;
令$h(t)=lnt+\frac{1}{t}-1({t>1}),h'(t)=\frac{1}{t}-\frac{1}{t^2}>0$,
可得h(t)在(1,+∞)上单调递增,即有h(t)>h(1)=0成立,
即有1-$\frac{1}{t}$<lnt.
综上所述:$\frac{1}{x_2}<k<\frac{1}{x_1}$.
点评 本题考查导数的运用:求切线的方程和单调性的判断,考查不等式的证明,注意运用分析法和构造函数法,运用单调性,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ② | C. | ③ | D. | ①② |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2:3 | B. | 4:3 | C. | 3:1 | D. | 3:2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2:1 | B. | 2:$\sqrt{3}$ | C. | $\sqrt{2}$:1 | D. | 1:1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 经济损失不超过 4000元 | 经济损失超过 4000元 | 合计 | |
| 捐款超过 500元 | 30 | ||
| 捐款不超 过500元 | 6 | ||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com