精英家教网 > 高中数学 > 题目详情
1.已知a,b,c为△ABC的三个角A,B,C所对的边,若3bcosC=c(1-3cosB),sinC:sinA=(  )
A.2:3B.4:3C.3:1D.3:2

分析 由3bcosC=c(1-3cosB).利用正弦定理可得3sinBcosC=sinC(1-3cosB),化简整理即可得出.

解答 解:由正弦定理,设$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=k$,
∵3bcosC=c(1-3cosB).
∴3sinBcosC=sinC(1-3cosB),
化简可得 sinC=3sin(B+C)
又A+B+C=π,
∴sinC=3sinA,
∴因此sinC:sinA=3:1.
故选:C.

点评 本题考查了正弦定理余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设集合M={x|-4≤x<2},集合N={x|2x<$\frac{1}{4}$},则M∩N中所含整数的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线2mx-ny-2=0(m>0,n>0)过点(1,-2),则$\frac{1}{m}$+$\frac{9}{n}$的最小值为(  )
A.2B.6C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),且f(-1)=2,则f(2017)的值是(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z1,z2在复平面内对应的点关于y轴对称,且z1=2-i,则复数$\frac{z_1}{{|{z_1}{|^2}+{z_2}}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx,g(x)=f(x)+x2-3x.
(1)求函数g(x)的图象在点(1,g(1))处的切线方程;
(2)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2)(x1<x2),证明:$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知 ($\sqrt{x}$-$\frac{a}{\sqrt{x}}$+y)6的展开式中含${x^{\frac{3}{2}}}$y的项的系数为15,则a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x、y满足$\left\{\begin{array}{l}y≥1\\ x-y+1≥0\\ x+y-4≤0\end{array}\right.$,则z=|3x+y|的最大值为(  )
A.1B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.100B.92C.84D.76

查看答案和解析>>

同步练习册答案