分析 将原式化为[($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)+y]6,由通项公式可得Tr+1=${C}_{6}^{r}$($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)6-r•yr,求得r=1,再由通项公式可得Tl+1=${C}_{5}^{l}$($\sqrt{x}$)5-l(-$\frac{a}{\sqrt{x}}$)l=${C}_{5}^{l}$(-a)lx${\;}^{\frac{5-2l}{2}}$,令$\frac{5-2l}{2}$=$\frac{3}{2}$,解得l=1,解方程即可得到a的值.
解答 解:($\sqrt{x}$-$\frac{a}{\sqrt{x}}$+y)6=[($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)+y]6,
可得通项公式为Tr+1=${C}_{6}^{r}$($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)6-r•yr,r=0,1,2…,6
由展开式中含${x^{\frac{3}{2}}}$y,可得r=1,
由($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)5的通项公式为Tl+1=${C}_{5}^{l}$($\sqrt{x}$)5-l(-$\frac{a}{\sqrt{x}}$)l
=${C}_{5}^{l}$(-a)lx${\;}^{\frac{5-2l}{2}}$,l=0,1,2,…,5
由题意可得$\frac{5-2l}{2}$=$\frac{3}{2}$,解得l=1,
可得${C}_{6}^{1}$${C}_{5}^{1}$(-a)=15,解得a=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.
点评 本题考查二项式定理的运用:求指定项的系数,考查二项式展开式的通项公式的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 28 | C. | 32 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2:3 | B. | 4:3 | C. | 3:1 | D. | 3:2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,3) | B. | (-1,3] | C. | (1,3) | D. | (1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2≥k0) | 0.1 | 0.05 | 0.01 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com