精英家教网 > 高中数学 > 题目详情
7.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手大多在以下两个年龄段:21~30,31~40(单位:岁),统计这两个年龄段选手答对歌曲名称与否的人数如图所示.
(1)写出2×2列联表,并判断是否有90%的把握认为答对歌曲名称与否和年龄有关,说明你的理由.(下面的临界值表供参考)
P(K2≥k0 0.1 0.050.01  0.005
 k0 2.7063.841  6.6357.879 
(2)在统计过的参考选手中按年龄段分层选取9名选手,并抽取3名幸运选手,求3名幸运选手中在21~30岁年龄段的人数的分布列和数学期望.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (1)根据所给的二维条形图得到列联表,利用公式求出k2=3>2.706,即可得出结论.
(2)设3名选手中在20~30岁之间的人数为ξ,可能取值为0,1,2,3,求出概率,列出分布列,求解期望即可.

解答 解:(1)2×2列联表

正确错误合计
21~30103040
31~40107080
合计20100120
∴K2=$\frac{120(70×10-30×10)^{2}}{20×100×40×80}$=3>2.706
有90%的把握认为猜对歌曲名称与否和年龄有关.------(4分)
(2)按照分层抽样方法可知:21~30(岁)抽取3人,31~40(岁)抽取6人.
设3名选手中在21~30岁之间的人数为ξ,可能取值为0,1,2,3----(5分)
P(ξ=0)=$\frac{{C}_{6}^{3}}{{C}_{9}^{3}}$=$\frac{5}{21}$,P(ξ=1)=$\frac{{C}_{3}^{1}{C}_{6}^{2}}{{C}_{9}^{3}}$=$\frac{15}{28}$,P(ξ=2)=$\frac{{C}_{3}^{2}{C}_{6}^{1}}{{C}_{9}^{3}}$=$\frac{3}{14}$,P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{9}^{3}}$=$\frac{1}{84}$.-----(10分)
ξD的分布列
ξ0123
P$\frac{5}{21}$$\frac{15}{28}$$\frac{3}{14}$$\frac{1}{84}$
--------------------(11分)
E(ξ)=0×$\frac{5}{21}$+1×$\frac{15}{28}$+2×$\frac{3}{14}$+3×$\frac{1}{84}$=1------(12分)

点评 本题考查对立检验的应用,离散型随机变量的分布列以及期望的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知 ($\sqrt{x}$-$\frac{a}{\sqrt{x}}$+y)6的展开式中含${x^{\frac{3}{2}}}$y的项的系数为15,则a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x1,x2是方程4x2-4mx+(m-1)2+2=0的两个实根,则x${\;}_{1}^{2}$+x${\;}_{2}^{2}$的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.100B.92C.84D.76

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.L一个几何体的三视图如图所示(单位:m),其正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1的
正方形,则该几何体的体积为(  )
A.$\frac{\sqrt{3}π}{12}$m3B.$\frac{\sqrt{3}π}{6}$m3C.$\frac{\sqrt{3}}{3}$m3D.$\frac{\sqrt{3}}{6}$m3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x2+2tx-1的单调递增区间是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) 123 4 5
 销售收益y(单位:万元)2 3 2 7
表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数y1=2sinx1(x1∈[0,2π]),函数y2=x2+$\sqrt{3}$,则(x1-x22+(y1-y22 的最小值为(  )
A.$\frac{(5π-6\sqrt{3})^{2}}{18}$B.$\frac{(5π+6\sqrt{3})^{2}}{18}$C.$\frac{{π}^{2}}{18}$D.$\frac{{π}^{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在三棱锥S-ABC中,已知SA=BC=2,SB=AC=$\sqrt{3}$,SC=AB=$\sqrt{5}$,则此三棱锥的外接球的表面积为(  )
A.B.2$\sqrt{6}$πC.D.12π

查看答案和解析>>

同步练习册答案